Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
2.
J Neuroinflammation ; 20(1): 135, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264394

RESUMO

INTRODUCTION: Gut microbiota plays a critical role in the regulation of immune homeostasis. Accordingly, several autoimmune disorders have been associated with dysbiosis in the gut microbiota. Notably, the dysbiosis associated with central nervous system (CNS) autoimmunity involves a substantial reduction of bacteria belonging to Clostridia clusters IV and XIVa, which constitute major producers of short-chain fatty acids (SCFAs). Here we addressed the role of the surface receptor-mediated effects of SCFAs on mucosal T-cells in the development of CNS autoimmunity. METHODS: To induce CNS autoimmunity, we used the mouse model of experimental autoimmune encephalomyelitis (EAE) induced by immunization with the myelin oligodendrocyte glycoprotein (MOG)-derived peptide (MOG35-55 peptide). To address the effects of GPR43 stimulation on colonic TCRαß+ T-cells upon CNS autoimmunity, mucosal lymphocytes were isolated and stimulated with a selective GPR43 agonist ex vivo and then transferred into congenic mice undergoing EAE. Several subsets of lymphocytes infiltrating the CNS or those present in the gut epithelium and gut lamina propria were analysed by flow cytometry. In vitro migration assays were conducted with mucosal T-cells using transwells. RESULTS: Our results show a sharp and selective reduction of intestinal propionate at the peak of EAE development, accompanied by increased IFN-γ and decreased IL-22 in the colonic mucosa. Further analyses indicated that GPR43 was the primary SCFAs receptor expressed on T-cells, which was downregulated on colonic TCRαß+ T-cells upon CNS autoimmunity. The pharmacologic stimulation of GPR43 increased the anti-inflammatory function and reduced the pro-inflammatory features in several TCRαß+ T-cell subsets in the colonic mucosa upon EAE development. Furthermore, GPR43 stimulation induced the arrest of CNS-autoreactive T-cells in the colonic lamina propria, thus avoiding their infiltration into the CNS and dampening the disease development. Mechanistic analyses revealed that GPR43-stimulation on mucosal TCRαß+ T-cells inhibits their CXCR3-mediated migration towards CXCL11, which is released from the CNS upon neuroinflammation. CONCLUSIONS: These findings provide a novel mechanism involved in the gut-brain axis by which bacterial-derived products secreted in the gut mucosa might control the CNS tropism of autoreactive T-cells. Moreover, this study shows GPR43 expressed on T-cells as a promising therapeutic target for CNS autoimmunity.


Assuntos
Encefalomielite Autoimune Experimental , Receptores de Antígenos de Linfócitos T alfa-beta , Camundongos , Animais , Autoimunidade , Disbiose , Sistema Nervoso Central , Glicoproteína Mielina-Oligodendrócito/toxicidade , Peptídeos , Camundongos Endogâmicos C57BL
3.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446028

RESUMO

Huntington's disease (HD) is a disorder caused by an abnormal expansion of trinucleotide CAG repeats within the huntingtin (Htt) gene. Under normal conditions, the CREB Binding Protein interacts with CREB elements and acetylates Lysine 27 of Histone 3 to direct the expression of several genes. However, mutant Htt causes depletion of CBP, which in turn induces altered histone acetylation patterns and transcriptional deregulation. Here, we have studied a differential expression analysis and H3K27ac variation in 4- and 6-week-old R6/2 mice as a model of juvenile HD. The analysis of differential gene expression and acetylation levels were integrated into Gene Regulatory Networks revealing key regulators involved in the altered transcription cascade. Our results show changes in acetylation and gene expression levels that are related to impaired neuronal development, and key regulators clearly defined in 6-week-old mice are proposed to drive the downstream regulatory cascade in HD. Here, we describe the first approach to determine the relationship among epigenetic changes in the early stages of HD. We determined the existence of changes in pre-symptomatic stages of HD as a starting point for early onset indicators of the progression of this disease.


Assuntos
Doença de Huntington , Camundongos , Animais , Doença de Huntington/genética , Doença de Huntington/metabolismo , Histonas/genética , Histonas/metabolismo , Acetilação , Modelos Animais de Doenças , Epigênese Genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
4.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834287

RESUMO

Periodontitis is a chronic inflammatory disease characterized by the progressive and irreversible destruction of the periodontium. Its aetiopathogenesis lies in the constant challenge of the dysbiotic biofilm, which triggers a deregulated immune response responsible for the disease phenotype. Although the molecular mechanisms underlying periodontitis have been extensively studied, the regulatory mechanisms at the transcriptional level remain unclear. To generate transcriptomic data, we performed RNA shotgun sequencing of the oral mucosa of periodontitis-affected mice. Since genes are not expressed in isolation during pathological processes, we disclose here the complete repertoire of differentially expressed genes (DEG) and co-expressed modules to build Gene Regulatory Networks (GRNs) and identify the Master Transcriptional Regulators of periodontitis. The transcriptional changes revealed 366 protein-coding genes and 42 non-coding genes differentially expressed and enriched in the immune response. Furthermore, we found 13 co-expression modules with different representation degrees and gene expression levels. Our GRN comprises genes from 12 gene clusters, 166 nodes, of which 33 encode Transcription Factors, and 201 connections. Finally, using these strategies, 26 master regulators of periodontitis were identified. In conclusion, combining the transcriptomic analyses with the regulatory network construction represents a powerful and efficient strategy for identifying potential periodontitis-therapeutic targets.


Assuntos
Periodontite , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/genética , Periodontite/genética , Periodontite/patologia , Transcriptoma , Perfilação da Expressão Gênica , Periodonto/patologia , Redes Reguladoras de Genes
5.
Bioinformatics ; 36(22-23): 5473-5480, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33367504

RESUMO

MOTIVATION: Cells are complex systems composed of hundreds of genes whose products interact to produce elaborated behaviors. To control such behaviors, cells rely on transcription factors to regulate gene expression, and gene regulatory networks (GRNs) are employed to describe and understand such behavior. However, GRNs are static models, and dynamic models are difficult to obtain due to their size, complexity, stochastic dynamics and interactions with other cell processes. RESULTS: We developed Atlas, a Python software that converts genome graphs and gene regulatory, interaction and metabolic networks into dynamic models. The software employs these biological networks to write rule-based models for the PySB framework. The underlying method is a divide-and-conquer strategy to obtain sub-models and combine them later into an ensemble model. To exemplify the utility of Atlas, we used networks of varying size and complexity of Escherichia coli and evaluated in silico modifications, such as gene knockouts and the insertion of promoters and terminators. Moreover, the methodology could be applied to the dynamic modeling of natural and synthetic networks of any bacteria. AVAILABILITY AND IMPLEMENTATION: Code, models and tutorials are available online (https://github.com/networkbiolab/atlas). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

6.
Mol Ther ; 29(5): 1862-1882, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545358

RESUMO

Alteration to endoplasmic reticulum (ER) proteostasis is observed in a variety of neurodegenerative diseases associated with abnormal protein aggregation. Activation of the unfolded protein response (UPR) enables an adaptive reaction to recover ER proteostasis and cell function. The UPR is initiated by specialized stress sensors that engage gene expression programs through the concerted action of the transcription factors ATF4, ATF6f, and XBP1s. Although UPR signaling is generally studied as unique linear signaling branches, correlative evidence suggests that ATF6f and XBP1s may physically interact to regulate a subset of UPR target genes. In this study, we designed an ATF6f/XBP1s fusion protein termed UPRplus that behaves as a heterodimer in terms of its selective transcriptional activity. Cell-based studies demonstrated that UPRplus has a stronger effect in reducing the abnormal aggregation of mutant huntingtin and α-synuclein when compared to XBP1s or ATF6 alone. We developed a gene transfer approach to deliver UPRplus into the brain using adeno-associated viruses (AAVs) and demonstrated potent neuroprotection in vivo in preclinical models of Parkinson's disease and Huntington's disease. These results support the concept in which directing UPR-mediated gene expression toward specific adaptive programs may serve as a possible strategy to optimize the beneficial effects of the pathway in different disease conditions.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/metabolismo , Fator 6 Ativador da Transcrição/genética , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Proteína Huntingtina/genética , Masculino , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Proteína 1 de Ligação a X-Box/genética , alfa-Sinucleína/genética
7.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613445

RESUMO

Recently, the combination of chemotherapy plus nivolumab (chemo-immunotherapy) has become the standard of care for advanced-stage gastric cancer (GC) patients. However, despite its efficacy, up to 40% of patients do not respond to these treatments. Our study sought to identify variations in gene expression associated with primary resistance to chemo-immunotherapy. Diagnostic endoscopic biopsies were retrospectively obtained from advanced GC patients previously categorized as responders (R) or non-responders (NR). Thirty-four tumor biopsies (R: n = 16, NR: n = 18) were analyzed by 3' massive analysis of cDNA ends (3'MACE). We found >30 differentially expressed genes between R and NRs. Subsequent pathway enrichment analyses demonstrated that angiogenesis and the Wnt-ß-catenin signaling pathway were enriched in NRs. Concomitantly, we performed next generation sequencing (NGS) analyses in a subset of four NR patients that confirmed alterations in genes that belonged to the Wnt/ß-catenin and the phosphoinositide 3-kinase (PI3K) pathways. We speculate that angiogenesis, the Wnt, and the PI3K pathways might offer actionable targets. We also discuss therapeutic alternatives for chemo-immunotherapy-resistant advanced-stage GC patients.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , beta Catenina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estudos Retrospectivos , Via de Sinalização Wnt/genética , Imunoterapia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
8.
BMC Genomics ; 19(1): 731, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30290792

RESUMO

BACKGROUND: The high-density lipoprotein receptor SR-B1 mediates cellular uptake of several lipid species, including cholesterol and vitamin E. During early mouse development, SR-B1 is located in the maternal-fetal interface, where it facilitates vitamin E transport towards the embryo. Consequently, mouse embryos lacking SR-B1 are vitamin E-deficient, and around half of them fail to close the neural tube and show cephalic neural tube defects (NTD). Here, we used transcriptomic profiling to identify the molecular determinants of this phenotypic difference between SR-B1 deficient embryos with normal morphology or with NTD. RESULTS: We used RNA-Seq to compare the transcriptomic profile of three groups of embryos retrieved from SR-B1 heterozygous intercrosses: wild-type E9.5 embryos (WT), embryos lacking SR-B1 that are morphologically normal, without NTD (KO-N) and SR-B1 deficient embryos with this defect (KO-NTD). We identified over 1000 differentially expressed genes: down-regulated genes in KO-NTD embryos were enriched for functions associated to neural development, while up-regulated genes in KO-NTD embryos were enriched for functions related to lipid metabolism. Feeding pregnant dams a vitamin E-enriched diet, which prevents NTD in SR-B1 KO embryos, resulted in mRNA levels for those differentially expressed genes that were more similar to KO-N than to KO-NTD embryos. We used gene regulatory network analysis to identify putative transcriptional regulators driving the different embryonic expression profiles, and identified a regulatory circuit controlled by the androgen receptor that may contribute to this dichotomous expression profile in SR-B1 embryos. Supporting this possibility, the expression level of the androgen receptor correlated strongly with the expression of several genes involved in neural development and lipid metabolism. CONCLUSIONS: Our analysis shows that normal and defective embryos lacking SR-B1 have divergent expression profiles, explained by a defined set of transcription factors that may explain their divergent phenotype. We propose that distinct expression profiles may be relevant during early development to support embryonic nutrition and neural tube closure.


Assuntos
Antígenos CD36/deficiência , Antígenos CD36/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Tubo Neural/embriologia , Transcrição Gênica , Animais , Humanos , Camundongos , Tubo Neural/metabolismo , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Fenótipo , Desmame
9.
Biochem Biophys Res Commun ; 498(2): 342-351, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29175206

RESUMO

Computational simulation is a widely employed methodology to study the dynamic behavior of complex systems. Although common approaches are based either on ordinary differential equations or stochastic differential equations, these techniques make several assumptions which, when it comes to biological processes, could often lead to unrealistic models. Among others, model approaches based on differential equations entangle kinetics and causality, failing when complexity increases, separating knowledge from models, and assuming that the average behavior of the population encompasses any individual deviation. To overcome these limitations, simulations based on the Stochastic Simulation Algorithm (SSA) appear as a suitable approach to model complex biological systems. In this work, we review three different models executed in PISKaS: a rule-based framework to produce multiscale stochastic simulations of complex systems. These models span multiple time and spatial scales ranging from gene regulation up to Game Theory. In the first example, we describe a model of the core regulatory network of gene expression in Escherichia coli highlighting the continuous model improvement capacities of PISKaS. The second example describes a hypothetical outbreak of the Ebola virus occurring in a compartmentalized environment resembling cities and highways. Finally, in the last example, we illustrate a stochastic model for the prisoner's dilemma; a common approach from social sciences describing complex interactions involving trust within human populations. As whole, these models demonstrate the capabilities of PISKaS providing fertile scenarios where to explore the dynamics of complex systems.


Assuntos
Algoritmos , Modelos Biológicos , Processos Estocásticos , Surtos de Doenças , Escherichia coli/genética , Teoria dos Jogos , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/transmissão , Humanos , Dilema do Prisioneiro , Confiança
10.
Proc Natl Acad Sci U S A ; 110(15): 6163-8, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23536301

RESUMO

Cryptochromes are flavoproteins, structurally and evolutionarily related to photolyases, that are involved in the development, magnetoreception, and temporal organization of a variety of organisms. Drosophila CRYPTOCHROME (dCRY) is involved in light synchronization of the master circadian clock, and its C terminus plays an important role in modulating light sensitivity and activity of the protein. The activation of dCRY by light requires a conformational change, but it has been suggested that activation could be mediated also by specific "regulators" that bind the C terminus of the protein. This C-terminal region harbors several protein-protein interaction motifs, likely relevant for signal transduction regulation. Here, we show that some functional linear motifs are evolutionarily conserved in the C terminus of cryptochromes and that class III PDZ-binding sites are selectively maintained in animals. A coimmunoprecipitation assay followed by mass spectrometry analysis revealed that dCRY interacts with Retinal Degeneration A (RDGA) and with Neither Inactivation Nor Afterpotential C (NINAC) proteins. Both proteins belong to a multiprotein complex (the Signalplex) that includes visual-signaling molecules. Using bioinformatic and molecular approaches, dCRY was found to interact with Neither Inactivation Nor Afterpotential C through Inactivation No Afterpotential D (INAD) in a light-dependent manner and that the CRY-Inactivation No Afterpotential D interaction is mediated by specific domains of the two proteins and involves the CRY C terminus. Moreover, an impairment of the visual behavior was observed in fly mutants for dCRY, indicative of a role, direct or indirect, for this photoreceptor in fly vision.


Assuntos
Criptocromos/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Proteínas do Olho/fisiologia , Visão Ocular/fisiologia , Motivos de Aminoácidos , Animais , Sítios de Ligação , Biologia Computacional , Drosophila melanogaster/metabolismo , Eletrorretinografia , Flavoproteínas/metabolismo , Luz , Espectrometria de Massas , Mapeamento de Interação de Proteínas , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
11.
BMC Genomics ; 15 Suppl 4: S7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25057121

RESUMO

BACKGROUND: The rapid growth of un-annotated missense variants poses challenges requiring novel strategies for their interpretation. From the thermodynamic point of view, amino acid changes can lead to a change in the internal energy of a protein and induce structural rearrangements. This is of great relevance for the study of diseases and protein design, justifying the development of prediction methods for variant-induced stability changes. RESULTS: Here we propose NeEMO, a tool for the evaluation of stability changes using an effective representation of proteins based on residue interaction networks (RINs). RINs are used to extract useful features describing interactions of the mutant amino acid with its structural environment. Benchmarking shows NeEMO to be very effective, allowing reliable predictions in different parts of the protein such as ß-strands and buried residues. Validation on a previously published independent dataset shows that NeEMO has a Pearson correlation coefficient of 0.77 and a standard error of 1 Kcal/mol, outperforming nine recent methods. The NeEMO web server can be freely accessed from URL: http://protein.bio.unipd.it/neemo/. CONCLUSIONS: NeEMO offers an innovative and reliable tool for the annotation of amino acid changes. A key contribution are RINs, which can be used for modeling proteins and their interactions effectively. Interestingly, the approach is very general, and can motivate the development of a new family of RIN-based protein structure analyzers. NeEMO may suggest innovative strategies for bioinformatics tools beyond protein stability prediction.


Assuntos
Biologia Computacional , Proteínas/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Internet , Mutação , Mapas de Interação de Proteínas , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/genética , Termodinâmica , Interface Usuário-Computador
12.
Microbiol Spectr ; 12(5): e0228723, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506512

RESUMO

Understanding the interactions between microorganisms and their impact on bacterial behavior at the community level is a key research topic in microbiology. Different methods, relying on experimental or mathematical approaches based on the diverse properties of bacteria, are currently employed to study these interactions. Recently, the use of metabolic networks to understand the interactions between bacterial pairs has increased, highlighting the relevance of this approach in characterizing bacteria. In this study, we leverage the representation of bacteria through their metabolic networks to build a predictive model aimed at reducing the number of experimental assays required for designing bacterial consortia with specific behaviors. Our novel method for predicting cross-feeding or competition interactions between pairs of microorganisms utilizes metabolic network features. Machine learning classifiers are employed to determine the type of interaction from automatically reconstructed metabolic networks. Several algorithms were assessed and selected based on comprehensive testing and careful separation of manually compiled data sets obtained from literature sources. We used different classification algorithms, including K Nearest Neighbors, XGBoost, Support Vector Machine, and Random Forest, tested different parameter values, and implemented several data curation approaches to reduce the biological bias associated with our data set, ultimately achieving an accuracy of over 0.9. Our method holds substantial potential to advance the understanding of community behavior and contribute to the development of more effective approaches for consortia design.IMPORTANCEUnderstanding bacterial interactions at the community level is critical for microbiology, and leveraging metabolic networks presents an efficient and effective approach. The introduction of this novel method for predicting interactions through machine learning classifiers has the potential to advance the field by reducing the number of experimental assays required and contributing to the development of more effective bacterial consortia.


Assuntos
Algoritmos , Bactérias , Aprendizado de Máquina , Redes e Vias Metabólicas , Interações Microbianas , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Interações Microbianas/fisiologia , Consórcios Microbianos/fisiologia , Fenômenos Fisiológicos Bacterianos , Máquina de Vetores de Suporte , Biologia Computacional/métodos
13.
Sci Rep ; 14(1): 10553, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719901

RESUMO

Inflammatory bowel diseases (IBD) are a group of chronic inflammatory conditions of the gastrointestinal tract associated with multiple pathogenic factors, including dysregulation of the immune response. Effector CD4+ T cells and regulatory CD4+ T cells (Treg) are central players in maintaining the balance between tolerance and inflammation. Interestingly, genetic modifications in these cells have been implicated in regulating the commitment of specific phenotypes and immune functions. However, the transcriptional program controlling the pathogenic behavior of T helper cells in IBD progression is still unknown. In this study, we aimed to find master transcription regulators controlling the pathogenic behavior of effector CD4+ T cells upon gut inflammation. To achieve this goal, we used an animal model of IBD induced by the transfer of naïve CD4+ T cells into recombination-activating gene 1 (Rag1) deficient mice, which are devoid of lymphocytes. As a control, a group of Rag1-/- mice received the transfer of the whole CD4+ T cells population, which includes both effector T cells and Treg. When gut inflammation progressed, we isolated CD4+ T cells from the colonic lamina propria and spleen tissue, and performed bulk RNA-seq. We identified differentially up- and down-regulated genes by comparing samples from both experimental groups. We found 532 differentially expressed genes (DEGs) in the colon and 30 DEGs in the spleen, mostly related to Th1 response, leukocyte migration, and response to cytokines in lamina propria T-cells. We integrated these data into Gene Regulatory Networks to identify Master Regulators, identifying four up-regulated master gene regulators (Lef1, Dnmt1, Mybl2, and Jup) and only one down-regulated master regulator (Foxo3). The altered expression of master regulators observed in the transcriptomic analysis was confirmed by qRT-PCR analysis and found an up-regulation of Lef1 and Mybl2, but without differences on Dnmt1, Jup, and Foxo3. These two master regulators have been involved in T cells function and cell cycle progression, respectively. We identified two master regulator genes associated with the pathogenic behavior of effector CD4+ T cells in an animal model of IBD. These findings provide two new potential molecular targets for treating IBD.


Assuntos
Linfócitos T CD4-Positivos , Redes Reguladoras de Genes , Doenças Inflamatórias Intestinais , Animais , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação da Expressão Gênica
14.
Front Microbiol ; 15: 1360268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633703

RESUMO

Recent studies have expanded the genomic contours of the Acidithiobacillia, highlighting important lacunae in our comprehension of the phylogenetic space occupied by certain lineages of the class. One such lineage is 'Igneacidithiobacillus', a novel genus-level taxon, represented by 'Igneacidithiobacillus copahuensis' VAN18-1T as its type species, along with two other uncultivated metagenome-assembled genomes (MAGs) originating from geothermally active sites across the Pacific Ring of Fire. In this study, we investigate the genetic and genomic diversity, and the distribution patterns of several uncharacterized Acidithiobacillia class strains and sequence clones, which are ascribed to the same 16S rRNA gene sequence clade. By digging deeper into this data and contributing to novel MAGs emerging from environmental studies in tectonically active locations, the description of this novel genus has been consolidated. Using state-of-the-art genomic taxonomy methods, we added to already recognized taxa, an additional four novel Candidate (Ca.) species, including 'Ca. Igneacidithiobacillus chanchocoensis' (mCHCt20-1TS), 'Igneacidithiobacillus siniensis' (S30A2T), 'Ca. Igneacidithiobacillus taupoensis' (TVZ-G3 TS), and 'Ca. Igneacidithiobacillus waiarikiensis' (TVZ-G4 TS). Analysis of published data on the isolation, enrichment, cultivation, and preliminary microbiological characterization of several of these unassigned or misassigned strains, along with the type species of the genus, plus the recoverable environmental data from metagenomic studies, allowed us to identify habitat preferences of these taxa. Commonalities and lineage-specific adaptations of the seven species of the genus were derived from pangenome analysis and comparative genomic metabolic reconstruction. The findings emerging from this study lay the groundwork for further research on the ecology, evolution, and biotechnological potential of the novel genus 'Igneacidithiobacillus'.

15.
Bioinformatics ; 28(4): 503-9, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22190692

RESUMO

MOTIVATION: Intrinsically disordered regions are key for the function of numerous proteins, and the scant available experimental annotations suggest the existence of different disorder flavors. While efficient predictions are required to annotate entire genomes, most existing methods require sequence profiles for disorder prediction, making them cumbersome for high-throughput applications. RESULTS: In this work, we present an ensemble of protein disorder predictors called ESpritz. These are based on bidirectional recursive neural networks and trained on three different flavors of disorder, including a novel NMR flexibility predictor. ESpritz can produce fast and accurate sequence-only predictions, annotating entire genomes in the order of hours on a single processor core. Alternatively, a slower but slightly more accurate ESpritz variant using sequence profiles can be used for applications requiring maximum performance. Two levels of prediction confidence allow either to maximize reasonable disorder detection or to limit expected false positives to 5%. ESpritz performs consistently well on the recent CASP9 data, reaching a S(w) measure of 54.82 and area under the receiver operator curve of 0.856. The fast predictor is four orders of magnitude faster and remains better than most publicly available CASP9 methods, making it ideal for genomic scale predictions. CONCLUSIONS: ESpritz predicts three flavors of disorder at two distinct false positive rates, either with a fast or slower and slightly more accurate approach. Given its state-of-the-art performance, it can be especially useful for high-throughput applications. AVAILABILITY: Both a web server for high-throughput analysis and a Linux executable version of ESpritz are available from: http://protein.bio.unipd.it/espritz/.


Assuntos
Redes Neurais de Computação , Proteínas/química , Proteínas/metabolismo , Algoritmos , Animais , Humanos , Conformação Proteica , Dobramento de Proteína
16.
Bioinformatics ; 28(15): 2080-1, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22661649

RESUMO

MOTIVATION: Disordered protein regions are key to the function of numerous processes within an organism and to the determination of a protein's biological role. The most common source for protein disorder annotations, DisProt, covers only a fraction of the available sequences. Alternatively, the Protein Data Bank (PDB) has been mined for missing residues in X-ray crystallographic structures. Herein, we provide a centralized source for data on different flavours of disorder in protein structures, MobiDB, building on and expanding the content provided by already existing sources. In addition to the DisProt and PDB X-ray structures, we have added experimental information from NMR structures and five different flavours of two disorder predictors (ESpritz and IUpred). These are combined into a weighted consensus disorder used to classify disordered regions into flexible and constrained disorder. Users are encouraged to submit manual annotations through a submission form. MobiDB features experimental annotations for 17 285 proteins, covering the entire PDB and predictions for the SwissProt database, with 565 200 annotated sequences. Depending on the disorder flavour, 6-20% of the residues are predicted as disordered. AVAILABILITY: The database is freely available at http://mobidb.bio.unipd.it/. CONTACT: silvio.tosatto@unipd.it.


Assuntos
Bases de Dados de Proteínas , Anotação de Sequência Molecular , Proteínas/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Estrutura Terciária de Proteína , Análise de Sequência de Proteína/métodos , Interface Usuário-Computador
17.
Nucleic Acids Res ; 39(Web Server issue): W190-6, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21646342

RESUMO

CSpritz is a web server for the prediction of intrinsic protein disorder. It is a combination of previous Spritz with two novel orthogonal systems developed by our group (Punch and ESpritz). Punch is based on sequence and structural templates trained with support vector machines. ESpritz is an efficient single sequence method based on bidirectional recursive neural networks. Spritz was extended to filter predictions based on structural homologues. After extensive testing, predictions are combined by averaging their probabilities. The CSpritz website can elaborate single or multiple predictions for either short or long disorder. The server provides a global output page, for download and simultaneous statistics of all predictions. Links are provided to each individual protein where the amino acid sequence and disorder prediction are displayed along with statistics for the individual protein. As a novel feature, CSpritz provides information about structural homologues as well as secondary structure and short functional linear motifs in each disordered segment. Benchmarking was performed on the very recent CASP9 data, where CSpritz would have ranked consistently well with a Sw measure of 49.27 and AUC of 0.828. The server, together with help and methods pages including examples, are freely available at URL: http://protein.bio.unipd.it/cspritz/.


Assuntos
Conformação Proteica , Software , Motivos de Aminoácidos , Internet , Anotação de Sequência Molecular , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
18.
Front Genet ; 14: 1209416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636264

RESUMO

This perspective highlights the potential of individualized networks as a novel strategy for studying complex diseases through patient stratification, enabling advancements in precision medicine. We emphasize the impact of interpatient heterogeneity resulting from genetic and environmental factors and discuss how individualized networks improve our ability to develop treatments and enhance diagnostics. Integrating system biology, combining multimodal information such as genomic and clinical data has reached a tipping point, allowing the inference of biological networks at a single-individual resolution. This approach generates a specific biological network per sample, representing the individual from which the sample originated. The availability of individualized networks enables applications in personalized medicine, such as identifying malfunctions and selecting tailored treatments. In essence, reliable, individualized networks can expedite research progress in understanding drug response variability by modeling heterogeneity among individuals and enabling the personalized selection of pharmacological targets for treatment. Therefore, developing diverse and cost-effective approaches for generating these networks is crucial for widespread application in clinical services.

19.
Comput Struct Biotechnol J ; 21: 3024-3031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266407

RESUMO

Motivation: One of the most relevant mechanisms involved in the determination of chromatin structure is the formation of structural loops that are also related with the conservation of chromatin states. Many of these loops are stabilized by CCCTC-binding factor (CTCF) proteins at their base. Despite the relevance of chromatin structure and the key role of CTCF, the role of the epigenetic factors that are involved in the regulation of CTCF binding, and thus, in the formation of structural loops in the chromatin, is not thoroughly understood. Results: Here we describe a CTCF binding predictor based on Random Forest that employs different epigenetic data and genomic features. Importantly, given the ability of Random Forests to determine the relevance of features for the prediction, our approach also shows how the different types of descriptors impact the binding of CTCF, confirming previous knowledge on the relevance of chromatin accessibility and DNA methylation, but demonstrating the effect of epigenetic modifications on the activity of CTCF. We compared our approach against other predictors and found improved performance in terms of areas under PR and ROC curves (PRAUC-ROCAUC), outperforming current state-of-the-art methods.

20.
Front Genet ; 14: 1286081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811146

RESUMO

[This corrects the article DOI: 10.3389/fgene.2023.1209416.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA