Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(11): e2118871119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259020

RESUMO

SignificanceJuvenile hormone (JH), a sesquiterpenoid, regulates many aspects of insect development, including maintenance of the larval stage by preventing metamorphosis. In contrast, ecdysteroids promote metamorphosis by inducing the E93 transcription factor, which triggers apoptosis of larval cells and remodeling of the larval midgut. We discovered that JH suppresses precocious larval midgut-remodeling by inducing an epigenetic modifier, histone deacetylase 3 (HDAC3). JH-induced HDAC3 deacetylates the histone H4 localized at the promoters of proapoptotic genes, resulting in the suppression of these genes. This eventually prevents programmed cell death of midgut cells and midgut-remodeling during larval stages. These studies identified a previously unknown mechanism of JH action in blocking premature remodeling of the midgut during larval feeding stages.


Assuntos
Aedes/fisiologia , Apoptose , Sistema Digestório/metabolismo , Histona Desacetilases/metabolismo , Hormônios Juvenis/metabolismo , Animais , Apoptose/genética , Sistema Digestório/anatomia & histologia , Ecdisona/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Histona Desacetilases/genética , Histonas/metabolismo , Larva , Pupa/metabolismo
2.
Front Insect Sci ; 3: 1113871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469502

RESUMO

The function of two autophagy genes, an activating molecule BECN1 regulated autophagy (AMBRA1) and autophagy-related gene 8 (ATG8) in the midgut remodeling of Aedes aegypti was investigated. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis of RNA samples collected from the last instar larvae and pupae showed that these two genes are predominantly expressed during the last 12 h and first 24 h of the last larval and pupal stages, respectively. Stable ecdysteroid analog induced and juvenile hormone (JH) analog suppressed these genes. RNA interference (RNAi) studies showed that the ecdysone-induced transcription factor E93 is required for the expression of these genes. JH-induced transcription factor krüppel homolog 1 (Kr-h1) suppressed the expression of these genes. RNAi-mediated silencing of AMBRA1 and ATG8 blocked midgut remodeling. Histological studies of midguts from insects at 48 h after ecdysis to the final larval stage and 12 h after ecdysis to the pupal stage showed that ATG gene knockdown blocked midgut remodeling. AMBRA1 and ATG8 double-stranded (dsRNA)-treated insects retained larval midgut cells and died during the pupal stage. Together, these results demonstrate that ecdysteroid induction of ATG genes initiates autophagy programmed cell death during midgut remodeling. JH inhibits midgut remodeling during metamorphosis by interfering with the expression of ATG genes.

3.
J Proteomics ; 242: 104257, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33957312

RESUMO

Recent studies reported that JH-regulated phosphorylation status of the JH-receptor complex contributes to its transcription activity in Aedes aegypti. However, phosphorylation sites of these proteins have not yet been identified. In this study, we found that the fusion of an EGFP tag to Ae. aegypti Kr-h1 (AaKr-h1) and Met (AaMet) improved their stability in mosquito Aag-2 cells, which allowed their purification. The liquid chromatography and tandem mass spectrometry analysis of the purified AaKr-h1 showed that the phosphoserine residue at position 694, located in the evolutionarily conserved SVIQ motif, is dephosphorylated when the cells are exposed to JH. The AaKr-h1 dephosphorylation mutant (S694V) showed significantly higher activity in inducing the luciferase gene regulated by JH response elements. The phosphorylation profile of Met also changed after exposing Aag-2 cells to JH III. The Ser-77 and Ser-710 residues of Met were phosphorylated after JH III treatment. In contrast, the two phosphoserine residues at positions 73 and 747 were dephosphorylated after JH III treatment. JH exposure also induced transient and reversible phosphorylation of Thr-664 and Ser-723 residues. Overall, these data show that JH induces changes in post-translational modifications of AaMet and AaKr-h1. SIGNIFICANCE: Female Aedes aegypti mosquitoes are known to vector many disease agents, including Zika virus, dengue virus chikungunya virus, and Mayaro and yellow fever virus. In the present study, we developed an efficient method to prepare Ae. aegypti Met and Kr-h1, which are typically difficult to produce and purify, using a mosquito cell line expression system. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approaches were utilized to map the phosphorylation profiles of the isolated proteins. We then monitored the changes induced by JH activation in the phosphorylation profiles to check if the JH modulates post-translation modification of its key transcription factors. We found that the JH induced alterations in the phosphorylation profiles of the multiple residues of AaMet. In contrast, activation of the JH signaling pathway was accompanied by dephosphorylation of AaKr-h1 at phosphoserine-694, increasing its transcriptional activity. In addition, S694 of AaKr-h1 was located in the RMSSVIQYA motif highly conserved in orthologous proteins from other insect species. These results can help us further understand how JH modulates its key transcription factors and provide a basis for the development of novel insect control strategies.


Assuntos
Aedes , Febre Amarela , Infecção por Zika virus , Zika virus , Aedes/metabolismo , Animais , Cromatografia Líquida , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Hormônios Juvenis , Metoprene , Mosquitos Vetores , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Zika virus/metabolismo
4.
CRISPR J ; 4(6): 846-853, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33450159

RESUMO

CRISPR-Cas9 mediated genome editing methods are being used for the analysis of gene function. However, it is hard to identify gene knockout mutants for genes whose knockout does not cause distinct phenotypes. To overcome this issue in the disease vector, Aedes aegypti, a transgenic Cas9/single guide RNA (sgRNA) method, was used to knock out the eye marker gene, kynurenine 3-monooxygenase (kmo), and the juvenile hormone receptor, Methoprene-tolerant (Met). PiggyBac transformation vectors were prepared to express sgRNAs targeting kmo and Met under the control of the U6 promoter. Transgenic Ae. aegypti expressing kmo-sgRNA or Met-sgRNA under the control of the U6 promoter and enhanced green fluorescent protein (eGFP) under the control of the hr5ie1 promoter were produced. The U6-sgRNA adults were mated with AAEL010097-Cas9 adults. The progeny were screened, and the insects expressing eGFP and DsRed were selected and evaluated for mutations in target genes. About 77% and 78% of the progeny that were positive for both eGFP and DsRed in kmo-sgRNA and Met-sgRNA groups, respectively, showed mutations in their target genes.


Assuntos
Aedes , Edição de Genes , Aedes/genética , Aedes/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Vetores de Doenças , Edição de Genes/métodos , Mosquitos Vetores/genética , Mosquitos Vetores/metabolismo , Mutagênese , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA