Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med Imaging ; 24(1): 105, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730390

RESUMO

Categorizing Artificial Intelligence of Medical Things (AIoMT) devices within the realm of standard Internet of Things (IoT) and Internet of Medical Things (IoMT) devices, particularly at the server and computational layers, poses a formidable challenge. In this paper, we present a novel methodology for categorizing AIoMT devices through the application of decentralized processing, referred to as "Federated Learning" (FL). Our approach involves deploying a system on standard IoT devices and labeled IoMT devices for training purposes and attribute extraction. Through this process, we extract and map the interconnected attributes from a global federated cum aggression server. The aim of this terminology is to extract interdependent devices via federated learning, ensuring data privacy and adherence to operational policies. Consequently, a global training dataset repository is coordinated to establish a centralized indexing and synchronization knowledge repository. The categorization process employs generic labels for devices transmitting medical data through regular communication channels. We evaluate our proposed methodology across a variety of IoT, IoMT, and AIoMT devices, demonstrating effective classification and labeling. Our technique yields a reliable categorization index for facilitating efficient access and optimization of medical devices within global servers.


Assuntos
Inteligência Artificial , Blockchain , Internet das Coisas , Humanos
2.
Sensors (Basel) ; 23(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37420735

RESUMO

The Internet of Things (IoT) plays a critical role in remotely monitoring a wide variety of different application sectors, including agriculture, building, and energy. The wind turbine energy generator (WTEG) is a real-world application that can take advantage of IoT technologies, such as a low-cost weather station, where human activities can be significantly affected by enhancing the production of clean energy based on the known direction of the wind. Meanwhile, common weather stations are neither affordable nor customizable for specific applications. Moreover, due to weather forecast changes over time and location within the same city, it is not efficient to rely on a limited number of weather stations that may be located far away from a recipient's location. Therefore, in this paper, we focus on presenting a low-cost weather station that relies on an artificial intelligence (AI) algorithm that can be distributed across a WTEG area with minimal cost. The proposed study measures multiple weather parameters, such as wind direction, wind velocity (WV), temperature, pressure, mean sea level, and relative humidity to provide current measurements to recipients and AI-based forecasts. In addition, the proposed study consists of several heterogeneous nodes and a controller for each station in a target area. The collected data can be transmitted through Bluetooth low energy (BLE). The experimental results reveal that the proposed study matches the standard of the National Meteorological Center (NMC), with a nowcast measurement of 95% accuracy for WV and 92% for wind direction (WD).


Assuntos
Inteligência Artificial , Internet das Coisas , Humanos , Tempo (Meteorologia) , Temperatura , Agricultura
3.
PLoS One ; 19(3): e0298731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527047

RESUMO

A shell and tube heat exchanger (STHE) for heat recovery applications was studied to discover the intricacies of its optimization. To optimize performance, a hybrid optimization methodology was developed by combining the Neural Fitting Tool (NFTool), Particle Swarm Optimization (PSO), and Grey Relational Analysis (GRE). STHE heat exchangers were analyzed systematically using the Taguchi method to analyze the critical elements related to a particular response. To clarify the complex relationship between the heat exchanger efficiency and operational parameters, grey relational grades (GRGs) are first computed. A forecast of the grey relation coefficients was then conducted using NFTool to provide more insight into the complex dynamics. An optimized parameter with a grey coefficient was created after applying PSO analysis, resulting in a higher grey coefficient and improved performance of the heat exchanger. A major and far-reaching application of this study was based on heat recovery. A detailed comparison was conducted between the estimated values and the experimental results as a result of the hybrid optimization algorithm. In the current study, the results demonstrate that the proposed counter-flow shell and tube strategy is effective for optimizing performance.


Assuntos
Algoritmos , Temperatura Alta
4.
Diagnostics (Basel) ; 13(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37998588

RESUMO

Prompt diagnostics and appropriate cancer therapy necessitate the use of gene expression databases. The integration of analytical methods can enhance detection precision by capturing intricate patterns and subtle connections in the data. This study proposes a diagnostic-integrated approach combining Empirical Bayes Harmonization (EBS), Jensen-Shannon Divergence (JSD), deep learning, and contour mathematics for cancer detection using gene expression data. EBS preprocesses the gene expression data, while JSD measures the distributional differences between cancerous and non-cancerous samples, providing invaluable insights into gene expression patterns. Deep learning (DL) models are employed for automatic deep feature extraction and to discern complex patterns from the data. Contour mathematics is applied to visualize decision boundaries and regions in the high-dimensional feature space. JSD imparts significant information to the deep learning model, directing it to concentrate on pertinent features associated with cancerous samples. Contour visualization elucidates the model's decision-making process, bolstering interpretability. The amalgamation of JSD, deep learning, and contour mathematics in gene expression dataset analysis diagnostics presents a promising pathway for precise cancer detection. This method taps into the prowess of deep learning for feature extraction while employing JSD to pinpoint distributional differences and contour mathematics for visual elucidation. The outcomes underscore its potential as a formidable instrument for cancer detection, furnishing crucial insights for timely diagnostics and tailor-made treatment strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA