Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 209(8): 947-959, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38064241

RESUMO

Rationale: The strongest genetic risk factor for childhood-onset asthma, the 17q21 locus, is associated with increased viral susceptibility and disease-promoting processes.Objectives: To identify biological targets underlying the escalated viral susceptibility associated with the clinical phenotype mediated by the 17q21 locus.Methods: Genome-wide transcriptome analysis of nasal brush samples from 261 children (78 healthy, 79 with wheezing at preschool age, 104 asthmatic) within the ALLIANCE (All-Age-Asthma) cohort, with a median age of 10.0 (range, 1.0-20.0) years, was conducted to explore the impact of their 17q21 genotype (SNP rs72163891). Concurrently, nasal secretions from the same patients and visits were collected, and high-sensitivity mesoscale technology was employed to measure IFN protein levels.Measurements and Main Results: This study revealed that the 17q21 risk allele induces a genotype- and asthma/wheeze phenotype-dependent enhancement of mucosal GSDMB expression as the only relevant 17q21-encoded gene in children with preschool wheeze. Increased GSDMB expression correlated with the activation of a type-1 proinflammatory, cell-lytic immune, and natural killer signature, encompassing key genes linked to an IFN type-2-signature (IFNG, CXCL9, CXCL10, KLRC1, CD8A, GZMA). Conversely, there was a reduction in IFN type 1 and type 3 expression signatures at the mRNA and protein levels.Conclusions: This study demonstrates a novel disease-driving mechanism induced by the 17q21 risk allele. Increased mucosal GSDMB expression is associated with a cell-lytic immune response coupled with compromised airway immunocompetence. These findings suggest that GSDMB-related airway cell death and perturbations in the mucosal IFN signature account for the increased vulnerability of 17q21 risk allele carriers to respiratory viral infections during early life, opening new options for future biological interventions.The All-Age-Asthma (ALLIANCE) cohort is registered at www.clinicaltrials.gov (pediatric arm, NCT02496468).


Assuntos
Asma , Pré-Escolar , Criança , Humanos , Lactente , Adolescente , Adulto Jovem , Adulto , Idoso de 80 Anos ou mais , Genótipo , Fenótipo , Alelos , RNA Mensageiro , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética
2.
J Adolesc ; 95(8): 1715-1724, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37661357

RESUMO

INTRODUCTION: Online grooming is the process by which an adult manipulates a minor by using information and communication technologies to interact sexually with that minor. The objective of this study was to analyze the stability of online grooming victimization among minors and its relationship with demographic variables (e.g., gender, age, and sexual orientation), emotions of shame and guilt, and depression and anxiety symptoms. METHODS: The participants were 746 adolescents aged 12-14 years when the study started (Mage = 13.34, SD = 0.87) who completed self-reports at Time 1 (T1) and 1 year later at Time 2 (T2). Among them, 400 were girls, 344 were boys, and two were nonbinary. At each time point, the minors self-reported their online grooming experiences during the previous year. RESULTS: The results showed that 11.8% (n = 89) of the participants were T1-victims, 13% (n = 95) were T2-victims, and 11% (n = 81) were stable victims of online grooming. Stability in victimization was related to being older, being a sexual minority, being born abroad, having separated or divorced parents, and having parents with a lower education level. Stable victims showed higher shame and guilt scores at T1 than did T1-victims, indicating that elevated levels of shame and guilt could contribute to the persistence of online grooming over time. CONCLUSIONS: Overall, adolescents in the stable victim category presented more depression and anxiety symptoms. Intervention strategies should address emotions related to victimization, such as shame and guilt, as well as depression and anxiety symptoms.


Assuntos
Vítimas de Crime , Vergonha , Adulto , Adolescente , Animais , Humanos , Masculino , Feminino , Prevalência , Asseio Animal , Culpa , Vítimas de Crime/psicologia , Avaliação de Resultados em Cuidados de Saúde
3.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768831

RESUMO

Chronic Kidney Disease (CKD), a global health burden, is strongly associated with age-related renal function decline, hypertension, and diabetes, which are all frequent consequences of obesity. Despite extensive studies, the mechanisms determining susceptibility to CKD remain insufficiently understood. Clinical evidence together with prior studies from our group showed that perinatal metabolic disorders after intrauterine growth restriction or maternal obesity adversely affect kidney structure and function throughout life. Since obesity and aging processes converge in similar pathways we tested if perinatal obesity caused by high-fat diet (HFD)-fed dams sensitizes aging-associated mechanisms in kidneys of newborn mice. The results showed a marked increase of γH2AX-positive cells with elevated 8-Oxo-dG (RNA/DNA damage), both indicative of DNA damage response and oxidative stress. Using unbiased comprehensive transcriptomics we identified compartment-specific differentially-regulated signaling pathways in kidneys after perinatal obesity. Comparison of these data to transcriptomic data of naturally aged kidneys and prematurely aged kidneys of genetic modified mice with a hypomorphic allele of Ercc1, revealed similar signatures, e.g., inflammatory signaling. In a biochemical approach we validated pathways of inflammaging in the kidneys after perinatal obesity. Collectively, our initial findings demonstrate premature aging-associated processes as a consequence of perinatal obesity that could determine the susceptibility for CKD early in life.


Assuntos
Senilidade Prematura , Insuficiência Renal Crônica , Feminino , Camundongos , Animais , Gravidez , Humanos , Senilidade Prematura/metabolismo , Obesidade/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Envelhecimento/genética
4.
J Lipid Res ; 63(11): 100283, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36152882

RESUMO

Intrauterine growth restriction (IUGR) predisposes to chronic kidney disease via activation of proinflammatory pathways, and omega-3 PUFAs (n-3 PUFAs) have anti-inflammatory properties. In female rats, we investigated 1) how an elevated dietary n-3/n-6 PUFA ratio (1:1) during postnatal kidney development modifies kidney phospholipid (PL) and arachidonic acid (AA) metabolite content and 2) whether the diet counteracts adverse molecular protein signatures expected in IUGR kidneys. IUGR was induced by bilateral uterine vessel ligation or intrauterine stress through sham operation 3.5 days before term. Control (C) offspring were born after uncompromised pregnancy. On postnatal (P) days P2-P39, rats were fed control (n-3/n-6 PUFA ratio 1:20) or n-3 PUFA intervention diet (N3PUFA; ratio 1:1). Plasma parameters (P33), kidney cortex lipidomics and proteomics, as well as histology (P39) were studied. We found that the intervention diet tripled PL-DHA content (PC 40:6; P < 0.01) and lowered both PL-AA content (PC 38:4 and lyso-phosphatidylcholine 20:4; P < 0.05) and AA metabolites (HETEs, dihydroxyeicosatrienoic acids, and epoxyeicosatrienoic acids) to 25% in all offspring groups. After ligation, our network analysis of differentially expressed proteins identified an adverse molecular signature indicating inflammation and hypercoagulability. N3PUFA diet reversed 61 protein alterations (P < 0.05), thus mitigating adverse IUGR signatures. In conclusion, an elevated n-3/n-6 PUFA ratio in early diet strongly reduces proinflammatory PLs and mediators while increasing DHA-containing PLs regardless of prior intrauterine conditions. Counteracting a proinflammatory hypercoagulable protein signature in young adult IUGR individuals through early diet intervention may be a feasible strategy to prevent developmentally programmed kidney damage in later life.


Assuntos
Ácidos Graxos Ômega-3 , Gravidez , Humanos , Animais , Ratos , Feminino , Ácidos Graxos Ômega-3/farmacologia , Dieta , Fosfolipídeos , Ácido Araquidônico , Retardo do Crescimento Fetal/metabolismo , Rim/metabolismo
5.
Eur Respir J ; 59(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34446466

RESUMO

RATIONALE: Premature infants exposed to oxygen are at risk for bronchopulmonary dysplasia (BPD), which is characterised by lung growth arrest. Inflammation is important, but the mechanisms remain elusive. Here, we investigated inflammatory pathways and therapeutic targets in severe clinical and experimental BPD. METHODS AND RESULTS: First, transcriptomic analysis with in silico cellular deconvolution identified a lung-intrinsic M1-like-driven cytokine pattern in newborn mice after hyperoxia. These findings were confirmed by gene expression of macrophage-regulating chemokines (Ccl2, Ccl7, Cxcl5) and markers (Il6, Il17A, Mmp12). Secondly, hyperoxia-activated interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signalling was measured in vivo and related to loss of alveolar epithelial type II cells (ATII) as well as increased mesenchymal marker. Il6 null mice exhibited preserved ATII survival, reduced myofibroblasts and improved elastic fibre assembly, thus enabling lung growth and protecting lung function. Pharmacological inhibition of global IL-6 signalling and IL-6 trans-signalling promoted alveolarisation and ATII survival after hyperoxia. Third, hyperoxia triggered M1-like polarisation, possibly via Krüppel-like factor 4; hyperoxia-conditioned medium of macrophages and IL-6-impaired ATII proliferation. Finally, clinical data demonstrated elevated macrophage-related plasma cytokines as potential biomarkers that identify infants receiving oxygen at increased risk of developing BPD. Moreover, macrophage-derived IL6 and active STAT3 were related to loss of epithelial cells in BPD lungs. CONCLUSION: We present a novel IL-6-mediated mechanism by which hyperoxia activates macrophages in immature lungs, impairs ATII homeostasis and disrupts elastic fibre formation, thereby inhibiting lung growth. The data provide evidence that IL-6 trans-signalling could offer an innovative pharmacological target to enable lung growth in severe neonatal chronic lung disease.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Hiperóxia/patologia , Interleucina-6/metabolismo , Pulmão , Macrófagos/metabolismo , Camundongos
6.
BMC Pulm Med ; 22(1): 183, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525938

RESUMO

BACKGROUND: Transforming Growth Factor-ß1 (TGF-ß1) is a genetic modifier in patients with cystic fibrosis (CF). Several single nucleotide polymorphisms (SNPs) of TGF-ß1 are associated with neutrophilic inflammation, lung fibrosis and loss of pulmonary function. AIM: The aim of this study was to assess the relationship between genetic TGF-ß1 polymorphisms and pulmonary disease progression in CF patients. Furthermore, the effect of TGF-ß1 polymorphisms on inflammatory cytokines in sputum was investigated. METHODS: 56 CF-patients and 62 controls were genotyped for three relevant SNPs in their TGF-ß1 sequence using the SNaPshot® technique. Individual "slopes" in forced expiratory volume in 1 s (FEV1) for all patients were calculated by using documented lung function values of the previous five years. The status of Pseudomonas aeruginosa (Pa) infection was determined. Sputum concentrations of the protease elastase, the serine protease inhibitor elafin and the cytokines IL-1ß, IL-8, IL-6, TNF-α were measured after a standardized sputum induction and processing. RESULTS: The homozygous TT genotype at codon 10 was associated with a lower rate of chronic Pa infection (p < 0.05). The heterozygous GC genotype at codon 25 was associated with lower lung function decline (p < 0.05). Patients with homozygous TT genotype at the promotor SNP showed higher levels of TNF-α (p < 0,05). Higher levels of TGF-ß1 in plasma were associated with a more rapid FEV1 decline over five years (p < 0.05). CONCLUSIONS: Our results suggest that polymorphisms in the TGF-ß1 gene have an effect on lung function decline, Pa infection as well as levels of inflammatory cytokines. Genotyping these polymorphisms could potentially be used to identify CF patients with higher risk of disease progression. TGF-ß1 inhibition could potentially be developed as a new therapeutic option to modulate CF lung disease.


Assuntos
Fibrose Cística , Fator de Crescimento Transformador beta1 , Códon , Fibrose Cística/genética , Citocinas/análise , Progressão da Doença , Genótipo , Humanos , Pulmão , Polimorfismo de Nucleotídeo Único , Fator de Crescimento Transformador beta1/genética
7.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628414

RESUMO

Maternal obesity predisposes for hepato-metabolic disorders early in life. However, the underlying mechanisms causing early onset dysfunction of the liver and metabolism remain elusive. Since obesity is associated with subacute chronic inflammation and accelerated aging, we test the hypothesis whether maternal obesity induces aging processes in the developing liver and determines thereby hepatic growth. To this end, maternal obesity was induced with high-fat diet (HFD) in C57BL/6N mice and male offspring were studied at the end of the lactation [postnatal day 21 (P21)]. Maternal obesity induced an obese body composition with metabolic inflammation and a marked hepatic growth restriction in the male offspring at P21. Proteomic and molecular analyses revealed three interrelated mechanisms that might account for the impaired hepatic growth pattern, indicating prematurely induced aging processes: (1) Increased DNA damage response (γH2AX), (2) significant upregulation of hepatocellular senescence markers (Cdnk1a, Cdkn2a); and (3) inhibition of hepatic insulin/insulin-like growth factor (IGF)-1-AKT-p38-FoxO1 signaling with an insufficient proliferative growth response. In conclusion, our murine data demonstrate that perinatal obesity induces an obese body composition in male offspring with hepatic growth restriction through a possible premature hepatic aging that is indicated by a pathologic sequence of inflammation, DNA damage, senescence, and signs of a possibly insufficient regenerative capacity.


Assuntos
Proteína Forkhead Box O1 , Fator de Crescimento Insulin-Like I , Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Proteínas Proto-Oncogênicas c-akt , Animais , Dano ao DNA , Feminino , Proteína Forkhead Box O1/metabolismo , Inflamação/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Obesidade Materna/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Am J Physiol Renal Physiol ; 321(1): F93-F105, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34056927

RESUMO

Intrauterine growth restriction (IUGR) due to an adverse intrauterine environment predisposes to arterial hypertension and loss of kidney function. Here, we investigated whether vascular dysregulation in renal interlobar arteries (RIAs) may contribute to hypertensive glomerular damage after IUGR. In rats, IUGR was induced by bilateral uterine vessel ligation. Offspring of nonoperated rats served as controls. From postnatal day 49, blood pressure was telemetrically recorded. On postnatal day 70, we evaluated contractile function in RIAs and mesenteric arteries. In addition, blood, urine, and glomerular parameters as well as renal collagen deposition were analyzed. IUGR RIAs not only showed loss of stretch activation in 9 of 11 arteries and reduced stretch-induced myogenic tone but also showed a shift of the concentration-response relation of acetylcholine-induced relaxation toward lower concentrations. However, IUGR RIAs also exhibited augmented contractions through phenylephrine. Systemic mean arterial pressure [mean difference: 4.8 mmHg (daytime) and 5.7 mmHg (night)], mean glomerular area (IUGR: 9,754 ± 338 µm2 and control: 8,395 ± 227 µm2), and urinary protein-to-creatinine ratio (IUGR: 1.67 ± 0.13 g/g and control: 1.26 ± 0.10 g/g) were elevated after IUGR. We conclude that male IUGR rat offspring may have increased vulnerability toward hypertensive glomerular damage due to loss of myogenic tone and augmented endothelium-dependent relaxation in RIAs.NEW & NOTEWORTHY For the first time, our study presents wire myography data from renal interlobar arteries (RIAs) and mesenteric arteries of young adult rat offspring after intrauterine growth restriction (IUGR). Our data indicate that myogenic tone in RIAs is dysfunctional after IUGR. Furthermore, IUGR offspring suffer from mild arterial hypertension, glomerular hypertrophy, and increased urinary protein-to-creatinine ratio. Dysregulation of vascular tone in RIAs could be an important variable that impacts upon vulnerability toward glomerular injury after IUGR.


Assuntos
Retardo do Crescimento Fetal/metabolismo , Hipertensão/fisiopatologia , Rim/metabolismo , Artéria Renal/fisiopatologia , Animais , Pressão Sanguínea/fisiologia , Retardo do Crescimento Fetal/fisiopatologia , Rim/efeitos dos fármacos , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Fenilefrina/farmacologia , Ratos
9.
Clin Sci (Lond) ; 134(7): 921-939, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32239178

RESUMO

Maternal obesity determines obesity and metabolic diseases in the offspring. The white adipose tissue (WAT) orchestrates metabolic pathways, and its dysfunction contributes to metabolic disorders in a sex-dependent manner. Here, we tested if sex differences influence the molecular mechanisms of metabolic programming of WAT in offspring of obese dams. To this end, maternal obesity was induced with high-fat diet (HFD) and the offspring were studied at an early phase [postnatal day 21 (P21)], a late phase (P70) and finally P120. In the early phase we found a sex-independent increase in WAT in offspring of obese dams using magnetic resonance imaging (MRI), which was more pronounced in females than males. While the adipocyte size increased in both sexes, the distribution of WAT differed in males and females. As mechanistic hints, we identified an inflammatory response in females and a senescence-associated reduction in the preadipocyte factor DLK in males. In the late phase, the obese body composition persisted in both sexes, with a partial reversal in females. Moreover, female offspring recovered completely from both the adipocyte hypertrophy and the inflammatory response. These findings were linked to a dysregulation of lipolytic, adipogenic and stemness-related markers as well as AMPKα and Akt signaling. Finally, the sex-dependent metabolic programming persisted with sex-specific differences in adipocyte size until P120. In conclusion, we do not only provide new insights into the molecular mechanisms of sex-dependent metabolic programming of WAT dysfunction, but also highlight the sex-dependent development of low- and high-grade pathogenic obesity.


Assuntos
Adipócitos Brancos/metabolismo , Adipogenia , Tecido Adiposo Branco/metabolismo , Adiposidade , Dieta Hiperlipídica , Metabolismo Energético , Obesidade Materna/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Adipócitos Brancos/patologia , Adipogenia/genética , Tecido Adiposo Branco/patologia , Tecido Adiposo Branco/fisiopatologia , Adiposidade/genética , Fenômenos Fisiológicos da Nutrição Animal , Animais , Tamanho Celular , Modelos Animais de Doenças , Metabolismo Energético/genética , Feminino , Regulação da Expressão Gênica , Hipertrofia , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos Endogâmicos C57BL , Estado Nutricional , Obesidade Materna/genética , Obesidade Materna/patologia , Obesidade Materna/fisiopatologia , Gravidez , Caracteres Sexuais , Fatores Sexuais , Transdução de Sinais , Fatores de Tempo
10.
FASEB J ; 33(5): 5887-5902, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30721632

RESUMO

Prematurity is linked to incomplete nephrogenesis and risk of chronic kidney diseases (CKDs). Oxygen is life-saving in that context but induces injury in numerous organs. Here, we studied the structural and functional impact of hyperoxia on renal injury and its IL-6 dependency. Newborn wild-type (WT) and IL-6 knockout (IL-6-/-) mice were exposed to 85% O2 for 28 d, followed by room air until postnatal d (P) 70. Controls were in room air throughout life. At P28, hyperoxia reduced estimated kidney cortex area (KCA) in WT; at P70, KCA was greater, number of glomeruli was fewer, fractional potassium excretion was higher, and glomerular filtration rate was slightly lower than in controls. IL-6-/- mice were protected from these changes after hyperoxia. Mechanistically, the acute renal injury phase (P28) showed in WT but not in IL-6-/- mice an activation of IL-6 (signal transducer and activator of transcription 3) and TGF-ß [mothers against decapentaplegic homolog (Smad)2] signaling, increased inflammatory markers, disrupted mitochondrial biogenesis, and reduced tubular proliferation. Regenerative phase at P70 was characterized by tubular proliferation in WT but not in IL-6-/- mice. These data demonstrate that hyperoxia increases the risk of CKD through a novel IL-6-Smad2 axis. The amenability of these pathways to pharmacological approaches may offer new avenues to protect premature infants from CKD.-Mohr, J., Voggel, J., Vohlen, C., Dinger, K., Dafinger, C., Fink, G., Göbel, H., Liebau, M. C., Dötsch, J., Alejandre Alcazar, M. A. IL-6/Smad2 signaling mediates acute kidney injury and regeneration in a murine model of neonatal hyperoxia.


Assuntos
Injúria Renal Aguda/metabolismo , Hiperóxia/metabolismo , Interleucina-6/metabolismo , Regeneração , Proteína Smad2/metabolismo , Animais , Animais Recém-Nascidos , Antioxidantes/metabolismo , Peso Corporal , Proliferação de Células , Modelos Animais de Doenças , Feminino , Taxa de Filtração Glomerular , Inflamação , Interleucina-6/genética , Córtex Renal/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão , Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta/metabolismo
12.
Am J Physiol Regul Integr Comp Physiol ; 317(1): R169-R181, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067073

RESUMO

Bronchopulmonary dysplasia (BPD) is a chronic lung disease of preterm infants, characterized by lung growth arrest and matrix remodeling. Various animal models provide mechanistic insights in the pathogenesis of BPD. Since there is increasing evidence that genetic susceptibility modifies the response to lung injury, we investigated strain-dependent effects in hyperoxia (HYX)-induced lung injury of newborn mice. To this end, we exposed newborn C57BL/6N and C57BL/6J mice to 85% O2 (HYX) or normoxia (NOX; 21% O2) for 28 days, followed by lung excision for histological and molecular measurements. BL/6J-NOX mice exhibited a lower body and lung weight than BL/6N-NOX mice; hyperoxia reduced body weight in both strains and increased lung weight only in BL/6J-HYX mice. Quantitative histomorphometric analyses revealed reduced alveolar formation in lungs of both strains after HYX, but the effect was greater in BL/6J-HYX mice than BL/6N-HYX mice. Septal thickness was lower in BL/6J-NOX mice than BL/6N-NOX mice but increased in both strains after HYX. Elastic fiber density was significantly greater in BL/6J-HYX mice than BL/6N-HYX mice. Lungs of BL/6J-HYX mice were protected from changes in gene expression of fibrillin-1, fibrillin-2, fibulin-4, fibulin-5, and surfactant proteins seen in BL/6N-HYX mice. Finally, Stat3 was activated by HYX in both strains; in contrast, activation of Smad2 was markedly greater in lungs of BL/6N mice than BL/6J mice after HYX. In summary, we demonstrate strain-dependent differences in lung structure and matrix, alveolar epithelial cell markers, and Smad2 (transforming growth factor ß) signaling in neonatal HYX-induced lung injury. Strain-dependent effects and genetic susceptibility need be taken into consideration for reproducibility and reliability of results in animal models.


Assuntos
Hiperóxia/patologia , Pneumopatias/induzido quimicamente , Pulmão/patologia , Oxigênio/efeitos adversos , Fator de Transcrição STAT3/metabolismo , Proteína Smad2/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos , Oxigênio/administração & dosagem , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Proteína Smad2/genética
13.
Am J Respir Cell Mol Biol ; 59(5): 623-634, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29894205

RESUMO

Mechanical ventilation with O2-rich gas (MV-O2) inhibits alveologenesis and lung growth. We previously showed that MV-O2 increased elastase activity and apoptosis in lungs of newborn mice, whereas elastase inhibition by elafin suppressed apoptosis and enabled lung growth. Pilot studies suggested that MV-O2 reduces lung expression of prosurvival factors phosphorylated epidermal growth factor receptor (pEGFR) and Krüppel-like factor 4 (Klf4). Here, we sought to determine whether apoptosis and lung growth arrest evoked by MV-O2 reflect disrupted pEGFR-Klf4 signaling, which elafin treatment preserves, and to assess potential biomarkers of bronchopulmonary dysplasia (BPD). Five-day-old mice underwent MV with air or 40% O2 for 8-24 hours with or without elafin treatment. Unventilated pups served as controls. Immunoblots were used to assess lung pEGFR and Klf4 proteins. Cultured MLE-12 cells were exposed to AG1478 (EGFR inhibitor), Klf4 siRNA, or vehicle to assess effects on proliferation, apoptosis, and EGFR regulation of Klf4. Plasma elastase and elafin levels were measured in extremely premature infants. In newborn mice, MV with air or 40% O2 inhibited EGFR phosphorylation and suppressed Klf4 protein content in lungs (vs. unventilated controls), yielding increased apoptosis. Elafin treatment inhibited elastase, preserved lung pEGFR and Klf4, and attenuated the apoptosis observed in lungs of vehicle-treated mice. In MLE-12 studies, pharmacological inhibition of EGFR and siRNA suppression of Klf4 increased apoptosis and reduced proliferation, and EGFR inhibition decreased Klf4. Plasma elastase levels were more than twofold higher, without a compensating increase of plasma elafin, in infants with BPD, compared to infants without BPD. These findings indicate that pEGFR-Klf4 is a novel prosurvival signaling pathway in lung epithelium that MV disrupts. Elafin preserves pEGFR-Klf4 signaling and inhibits apoptosis, thereby enabling lung growth during MV. Together, our animal and human data raise the question: would elastase inhibition prevent BPD in high-risk infants exposed to MV-O2?


Assuntos
Apoptose/efeitos dos fármacos , Displasia Broncopulmonar/tratamento farmacológico , Elafina/farmacologia , Receptores ErbB/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Alvéolos Pulmonares/efeitos dos fármacos , Respiração Artificial/efeitos adversos , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/fisiopatologia , Sobrevivência Celular , Células Cultivadas , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Fator 4 Semelhante a Kruppel , Estudos Longitudinais , Camundongos , Camundongos Endogâmicos BALB C , Organogênese , Elastase Pancreática/metabolismo , Inibidores de Proteases/farmacologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Transdução de Sinais
14.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L623-L637, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30047284

RESUMO

Intrauterine growth restriction (IUGR) is a risk factor for neonatal chronic lung disease (CLD) characterized by reduced alveoli and perturbed matrix remodeling. Previously, our group showed an activation of myofibroblasts and matrix remodeling in rat lungs after IUGR. Because growth hormone (GH) and insulin-like growth factor I (IGF-I) regulate development and growth, we queried 1) whether GH/IGF-I signaling is dysregulated in lungs after IUGR and 2) whether GH/IGF-I signaling is linked to neonatal lung myofibroblast function. IUGR was induced in Wistar rats by isocaloric low-protein diet during gestation. Lungs were obtained at embryonic day (E) 21, postnatal day (P) 3, P12, and P23. Murine embryonic fibroblasts (MEF) or primary neonatal myofibroblasts from rat lungs of control (pnFCo) and IUGR (pnFIUGR) were used for cell culture studies. In the intrauterine phase (E21), we found a reduction in GH receptor (GH-R), Stat5 signaling and IGF-I expression in lungs after IUGR. In the postnatal phase (P3-P23), catchup growth after IUGR was linked to increased GH mRNA, GH-R protein, activation of proliferative Stat5/Akt signaling, cyclin D1 and PCNA in rat lungs. On P23, a thickening of the alveolar septae was related to increased vimentin and matrix deposition, indicating fibrosis. In cell culture studies, nutrient deprivation blocked GH-R/IGF-IR signaling and proliferation in MEFs; this was reversed by IGF-I. Proliferation and Stat5 activation were increased in pnFIUGR. IGF-I and GH induced proliferation and migration of pnFCo; only IGF-I had these effects on pnFIUGR. Thus, we show a novel mechanism by which the GH/IGF-I axis in lung myofibroblasts could account for structural lung changes after IUGR.


Assuntos
Retardo do Crescimento Fetal/fisiopatologia , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Pulmão/patologia , Miofibroblastos/patologia , Animais , Proliferação de Células , Células Cultivadas , Feminino , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Masculino , Miofibroblastos/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
15.
Arterioscler Thromb Vasc Biol ; 37(8): 1559-1569, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28619995

RESUMO

OBJECTIVE: We determined in patients with pulmonary arterial (PA) hypertension (PAH) whether in addition to increased production of elastase by PA smooth muscle cells previously reported, PA elastic fibers are susceptible to degradation because of their abnormal assembly. APPROACH AND RESULTS: Fibrillin-1 and elastin are the major components of elastic fibers, and fibrillin-1 binds bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-ß1 (TGFß1). Thus, we considered whether BMPs like TGFß1 contribute to elastic fiber assembly and whether this process is perturbed in PAH particularly when the BMP receptor, BMPR2, is mutant. We also assessed whether in mice with Bmpr2/1a compound heterozygosity, elastic fibers are susceptible to degradation. In PA smooth muscle cells and adventitial fibroblasts, TGFß1 increased elastin mRNA, but the elevation in elastin protein was dependent on BMPR2; TGFß1 and BMP4, via BMPR2, increased extracellular accumulation of fibrillin-1. Both BMP4- and TGFß1-stimulated elastic fiber assembly was impaired in idiopathic (I) PAH-PA adventitial fibroblast versus control cells, particularly those with hereditary (H) PAH and a BMPR2 mutation. This was related to profound reductions in elastin and fibrillin-1 mRNA. Elastin protein was increased in IPAH PA adventitial fibroblast by TGFß1 but only minimally so in BMPR2 mutant cells. Fibrillin-1 protein increased only modestly in IPAH or HPAH PA adventitial fibroblasts stimulated with BMP4 or TGFß1. In Bmpr2/1a heterozygote mice, reduced PA fibrillin-1 was associated with elastic fiber susceptibility to degradation and more severe pulmonary hypertension. CONCLUSIONS: Disrupting BMPR2 impairs TGFß1- and BMP4-mediated elastic fiber assembly and is of pathophysiologic significance in PAH.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Tecido Elástico/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Remodelação Vascular , Animais , Proteína Morfogenética Óssea 4/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/deficiência , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/deficiência , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Tecido Elástico/patologia , Tecido Elástico/fisiopatologia , Elastina/genética , Elastina/metabolismo , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/patologia , Hipertensão Pulmonar Primária Familiar/fisiopatologia , Fibrilina-1/genética , Fibrilina-1/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Predisposição Genética para Doença , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Interferência de RNA , Transfecção
16.
Am J Physiol Lung Cell Mol Physiol ; 313(4): L687-L698, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28684544

RESUMO

Deficiency of the extracellular matrix protein latent transforming growth factor-ß (TGF-ß)-binding protein-4 (LTBP4) results in lack of intact elastic fibers, which leads to disturbed pulmonary development and lack of normal alveolarization in humans and mice. Formation of alveoli and alveolar septation in pulmonary development requires the concerted interaction of extracellular matrix proteins, growth factors such as TGF-ß, fibroblasts, and myofibroblasts to promote elastogenesis as well as vascular formation in the alveolar septae. To investigate the role of LTBP4 in this context, lungs of LTBP4-deficient (Ltbp4-/-) mice were analyzed in close detail. We elucidate the role of LTBP4 in pulmonary alveolarization and show that three different, interacting mechanisms might contribute to alveolar septation defects in Ltbp4-/- lungs: 1) absence of an intact elastic fiber network, 2) reduced angiogenesis, and 3) upregulation of TGF-ß activity resulting in profibrotic processes in the lung.


Assuntos
Tecido Elástico/patologia , Fibroblastos/patologia , Fibrose/patologia , Proteínas de Ligação a TGF-beta Latente/fisiologia , Pulmão/patologia , Neovascularização Patológica/patologia , Alvéolos Pulmonares/patologia , Animais , Células Cultivadas , Tecido Elástico/metabolismo , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibrose/metabolismo , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neovascularização Patológica/metabolismo , Organogênese/fisiologia , Alvéolos Pulmonares/metabolismo , Fator de Crescimento Transformador beta/metabolismo
17.
Am J Physiol Lung Cell Mol Physiol ; 313(3): L491-L506, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572154

RESUMO

Individuals with intrauterine growth restriction (IUGR) are at risk for chronic lung disease. Using a rat model, we showed in our previous studies that altered lung structure is related to IL-6/STAT3 signaling. As neuropeptide Y (NPY), a coneurotransmitter of the sympathetic nervous system, regulates proliferation and immune response, we hypothesized that dysregulated NPY after IUGR is linked to IL-6, impaired myofibroblast function, and alveolar growth. IUGR was induced in rats by isocaloric low-protein diet; lungs were analyzed on embryonic day (E) 21, postnatal day (P) 3, P12, and P23. Finally, primary neonatal lung myofibroblasts (pnF) and murine embryonic fibroblasts (MEF) were used to assess proliferation, apoptosis, migration, and IL-6 expression. At E21, NPY and IL-6 expression was decreased, and AKT/PKC and STAT3/AMPKα signaling was reduced. Early reduction of NPY/IL-6 was associated with increased chord length in lungs after IUGR at P3, indicating reduced alveolar formation. At P23, however, IUGR rats exhibited a catch-up of body weight and alveolar growth coupled with more proliferating myofibroblasts. These structural findings after IUGR were linked to activated NPY/PKC, IL-6/AMPKα signaling. Complementary, IUGR-pnF showed increased survival, impaired migration, and reduced IL-6 compared with control-pnF (Co-pnF). In contrast, NPY induced proliferation, migration, and increased IL-6 synthesis in fibroblasts. Additionally, NPY-/- mice showed reduced IL-6 signaling and less proliferation of lung fibroblasts. Our study presents a novel role of NPY during alveolarization: NPY regulates 1) IL-6 and lung STAT3/AMPKα signaling, and 2) proliferation and migration of myofibroblasts. These new insights in pulmonary neuroimmune interaction offer potential strategies to enable lung growth.


Assuntos
Retardo do Crescimento Fetal/patologia , Pulmão/crescimento & desenvolvimento , Neuropeptídeo Y/metabolismo , Sistema Nervoso Simpático/imunologia , Sistema Nervoso Simpático/patologia , Adenilato Quinase/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/genética , Biomarcadores/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Dieta , Retardo do Crescimento Fetal/imunologia , Regulação da Expressão Gênica , Interleucina-6/genética , Interleucina-6/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Miofibroblastos/metabolismo , Neurotransmissores/metabolismo , Proteína Quinase C/metabolismo , Ratos Wistar , Receptores de Neuropeptídeo Y/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Aumento de Peso
19.
J Am Heart Assoc ; 13(3): e029427, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38293915

RESUMO

BACKGROUND: The right ventricle (RV) is at risk in patients with complex congenital heart disease involving right-sided obstructive lesions. We have shown that capillary rarefaction occurs early in the pressure-loaded RV. Here we test the hypothesis that microRNA (miR)-34a, which is induced in RV hypertrophy and RV failure (RVF), blocks the hypoxia-inducible factor-1α-vascular endothelial growth factor (VEGF) axis, leading to the attenuated angiogenic response and increased susceptibility to RV failure. METHODS AND RESULTS: Mice underwent pulmonary artery banding to induce RV hypertrophy and RVF. Capillary rarefaction occurred immediately. Although hypoxia-inducible factor-1α expression increased (0.12±0.01 versus 0.22±0.03, P=0.05), VEGF expression decreased (0.61±0.03 versus 0.22±0.05, P=0.01). miR-34a expression was most upregulated in fibroblasts (4-fold), but also in cardiomyocytes and endothelial cells (2-fold). Overexpression of miR-34a in endothelial cells increased cell senescence (10±3% versus 22±2%, P<0.05) by suppressing sirtulin 1 expression, and decreased tube formation by 50% via suppression of hypoxia-inducible factor-1α, VEGF A, VEGF B, and VEGF receptor 2. miR-34a was induced by stretch, transforming growth factor-ß1, adrenergic stimulation, and hypoxia in cardiac fibroblasts and cardiomyocytes. In mice with RVF, locked nucleic acid-antimiR-34a improved RV shortening fraction and survival half-time and restored capillarity and VEGF expression. In children with congenital heart disease-related RVF, RV capillarity was decreased and miR-34a increased 5-fold. CONCLUSIONS: In summary, miR-34a from fibroblasts, cardiomyocytes, and endothelial cells mediates capillary rarefaction by suppressing the hypoxia-inducible factor-1α-VEGF axis in RV hypertrophy/RVF, raising the potential for anti-miR-34a therapeutics in patients with at-risk RVs.


Assuntos
Cardiopatias Congênitas , Insuficiência Cardíaca , MicroRNAs , Rarefação Microvascular , Criança , Humanos , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Angiogênese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rarefação Microvascular/metabolismo , Insuficiência Cardíaca/metabolismo , Hipertrofia Ventricular Direita , Miócitos Cardíacos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiopatias Congênitas/metabolismo
20.
Cells ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38534344

RESUMO

Intrauterine growth restriction (IUGR) and being small for gestational age (SGA) are two distinct conditions with different implications for short- and long-term child development. SGA is present if the estimated fetal or birth weight is below the tenth percentile. IUGR can be identified by additional abnormalities (pathological Doppler sonography, oligohydramnion, lack of growth in the interval, estimated weight below the third percentile) and can also be present in fetuses and neonates with weights above the tenth percentile. There is a need to differentiate between IUGR and SGA whenever possible, as IUGR in particular is associated with greater perinatal morbidity, prematurity and mortality, as well as an increased risk for diseases in later life. Recognizing fetuses and newborns being "at risk" in order to monitor them accordingly and deliver them in good time, as well as to provide adequate follow up care to ameliorate adverse sequelae is still challenging. This review article discusses approaches to differentiate IUGR from SGA and further increase diagnostic accuracy. Since adverse prenatal influences increase but individually optimized further child development decreases the risk of later diseases, we also discuss the need for interdisciplinary follow-up strategies during childhood. Moreover, we present current concepts of pathophysiology, with a focus on oxidative stress and consecutive inflammatory and metabolic changes as key molecular mechanisms of adverse sequelae, and look at future scientific opportunities and challenges. Most importantly, awareness needs to be raised that pre- and postnatal care of IUGR neonates should be regarded as a continuum.


Assuntos
Retardo do Crescimento Fetal , Doenças do Recém-Nascido , Feminino , Humanos , Recém-Nascido , Gravidez , Feto , Recém-Nascido Prematuro , Recém-Nascido Pequeno para a Idade Gestacional/fisiologia , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA