Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mem Inst Oswaldo Cruz ; 109(4): 511-3, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24936912

RESUMO

Gene knockout is a widely used approach to evaluate loss-of-function phenotypes and it can be facilitated by the incorporation of a DNA cassette having a drug-selectable marker. Confirmation of the correct knockout cassette insertion is an important step in gene removal validation and has generally been performed by polymerase chain reaction (PCR) assays following a time-consuming DNA extraction step. Here, we show a rapid procedure for the identification of Trypanosoma cruzi transfectants by PCR directly from liquid culture - without prior DNA extraction. This simple approach enabled us to generate PCR amplifications from different cultures varying from 106-108 cells/mL. We also show that it is possible to combine different primer pairs in a multiplex detection reaction and even to achieve knockout confirmation with an extremely simple interpretation of a real-time PCR result. Using the "culture PCR" approach, we show for the first time that we can assess different DNA sequence combinations by PCR directly from liquid culture, saving time in several tasks for T. cruzi genotype interrogation.


Assuntos
Trypanosoma cruzi/genética , Primers do DNA/genética , DNA de Protozoário/genética , Técnicas de Inativação de Genes , Genótipo , Reação em Cadeia da Polimerase , Transfecção
2.
Sci Rep ; 11(1): 21671, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737385

RESUMO

Trypanosoma cruzi-the causative agent of Chagas disease-like other kinetoplastids, relies mostly on post-transcriptional mechanisms for regulation of gene expression. However, trypanosomatids undergo drastic changes in nuclear architecture and chromatin structure along their complex life cycle which, combined with a remarkable set of reversible histone post-translational modifications, indicate that chromatin is also a target for control of gene expression and differentiation signals in these organisms. Chromatin-modifying enzymes have a direct impact on gene expression programs and DNA metabolism. In this work, we have investigated the function of T. cruzi histone deacetylase 4 (TcHDAC4). We show that, although TcHDAC4 is not essential for viability, metacyclic trypomastigote TcHDAC4 null mutants show a thin cell body and a round and less condensed nucleus located very close to the kinetoplast. Sixty-four acetylation sites were quantitatively evaluated, which revealed H2AT85ac, H4K10ac and H4K78ac as potential target sites of TcHDAC4. Gene expression analyses identified three chromosomes with overrepresented regions of differentially expressed genes in the TcHDAC4 knockout mutant compared with the wild type, showing clusters of either up or downregulated genes. The adjacent chromosomal location of some of these genes indicates that TcHDAC4 participates in gene expression regulation during T. cruzi differentiation.


Assuntos
Regulação da Expressão Gênica/genética , Histona Desacetilases/deficiência , Histona Desacetilases/genética , Trypanosoma cruzi/genética , Acetilação , Animais , Técnicas de Cultura de Células , Doença de Chagas/genética , Chlorocebus aethiops , Cromatina/metabolismo , Expressão Gênica/genética , Humanos , Estágios do Ciclo de Vida/genética , Processamento de Proteína Pós-Traducional/genética , Proteínas de Protozoários/genética , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Trypanosoma cruzi/metabolismo , Células Vero
3.
Mol Biochem Parasitol ; 221: 1-9, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29409763

RESUMO

In the protozoan parasite Trypanosoma cruzi - the causative agent of Chagas disease - gene expression control is mainly post-transcriptional, where RNA-binding proteins (RBPs) play a central role, by controlling mRNA stability, distribution and translation. A large variety of RBPs are encoded in the T. cruzi genome, including the CCCH-type zinc finger (CCCH ZnF) protein family, which is characterized by the presence of the C-X7/8-C-X5-C-X3-H (CCCH) motif. In the related parasite T. brucei, CCCH ZnF proteins have been shown to control key differentiation steps in the parasite's life cycle. However, little is known about the CCCH ZnF proteins in T. cruzi. We have worked on the generation of T. cruzi mutants for CCCH ZnF proteins in an effort to shed light on the functions of these proteins in this parasite. Here, we characterize the expression and function of the CCCH ZnF protein TcZC3H31 of T. cruzi. TcZC3H31 is almost exclusively expressed in epimastigotes and metacyclic trypomastigotes, the parasite forms found in the invertebrate host. Importantly, we show that the epimastigote form of the T. cruzi knockout for the TcZC3H31 gene (TcZC3H31 KO) is incapable, both in vitro and in vivo (in infected triatomine insects), to differentiate into the metacyclic trypomastigote form, which is responsible for infection transmission from vectors to humans. The epimastigote forms recovered from the excreta of insects infected with TcZC3H31 KO parasites do not have the typical epimastigote morphology, suggesting that parasites are arrested in a mid-differentiation step. Also, epimastigotes overexpressing TcZC3H31 differentiate into metacyclics more efficiently than wild-type epimastigotes, in vitro. These data suggest that TcZC3H31 is an essential positive regulator of T. cruzi differentiation into the human-infective metacyclic form.


Assuntos
Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/metabolismo , Trypanosoma cruzi/citologia , Trypanosoma cruzi/crescimento & desenvolvimento , Dedos de Zinco , Animais , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Insetos , Proteínas de Protozoários/genética , Proteínas de Ligação a RNA/genética , Trypanosoma cruzi/genética
5.
Mem. Inst. Oswaldo Cruz ; 109(4): 511-513, 03/07/2014. graf
Artigo em Inglês | LILACS | ID: lil-716313

RESUMO

Gene knockout is a widely used approach to evaluate loss-of-function phenotypes and it can be facilitated by the incorporation of a DNA cassette having a drug-selectable marker. Confirmation of the correct knockout cassette insertion is an important step in gene removal validation and has generally been performed by polymerase chain reaction (PCR) assays following a time-consuming DNA extraction step. Here, we show a rapid procedure for the identification of Trypanosoma cruzi transfectants by PCR directly from liquid culture - without prior DNA extraction. This simple approach enabled us to generate PCR amplifications from different cultures varying from 106-108 cells/mL. We also show that it is possible to combine different primer pairs in a multiplex detection reaction and even to achieve knockout confirmation with an extremely simple interpretation of a real-time PCR result. Using the “culture PCR” approach, we show for the first time that we can assess different DNA sequence combinations by PCR directly from liquid culture, saving time in several tasks for T. cruzi genotype interrogation.


Assuntos
Trypanosoma cruzi/genética , Primers do DNA/genética , DNA de Protozoário/genética , Técnicas de Inativação de Genes , Genótipo , Reação em Cadeia da Polimerase , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA