Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(24): 7085-7101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907071

RESUMO

Most of the world's nations (around 130) have committed to reaching net-zero carbon dioxide or greenhouse gas (GHG) emissions by 2050, yet robust policies rarely underpin these ambitions. To investigate whether existing and expected national policies will allow Brazil to meet its net-zero GHG emissions pledge by 2050, we applied a detailed regional integrated assessment modelling approach. This included quantifying the role of nature-based solutions, such as the protection and restoration of ecosystems, and engineered solutions, such as bioenergy with carbon capture and storage. Our results highlight ecosystem protection as the most critical cost-effective climate mitigation measure for Brazil, whereas relying heavily on costly and not-mature-yet engineered solutions will jeopardise Brazil's chances of achieving its net-zero pledge by mid-century. We show that the full implementation of Brazil's Forest Code (FC), a key policy for emission reduction in Brazil, would be enough for the country to achieve its short-term climate targets up to 2030. However, it would reduce the gap to net-zero GHG emissions by 38% by 2050. The FC, combined with zero legal deforestation and additional large-scale ecosystem restoration, would reduce this gap by 62% by mid-century, keeping Brazil on a clear path towards net-zero GHG emissions by around 2040. While some level of deployment of negative emissions technologies will be needed for Brazil to achieve and sustain its net-zero pledge, we show that the more mitigation measures from the land-use sector, the less costly engineered solutions from the energy sector will be required. Our analysis underlines the urgent need for Brazil to go beyond existing policies to help fight climate emergency, to align its short- and long-term climate targets, and to build climate resilience while curbing biodiversity loss.


Assuntos
Efeito Estufa , Gases de Efeito Estufa , Agricultura/métodos , Ecossistema , Brasil , Gases de Efeito Estufa/análise
2.
Science ; 379(6630): eabp8622, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701452

RESUMO

Approximately 2.5 × 106 square kilometers of the Amazon forest are currently degraded by fire, edge effects, timber extraction, and/or extreme drought, representing 38% of all remaining forests in the region. Carbon emissions from this degradation total up to 0.2 petagrams of carbon per year (Pg C year-1), which is equivalent to, if not greater than, the emissions from Amazon deforestation (0.06 to 0.21 Pg C year-1). Amazon forest degradation can reduce dry-season evapotranspiration by up to 34% and cause as much biodiversity loss as deforestation in human-modified landscapes, generating uneven socioeconomic burdens, mainly to forest dwellers. Projections indicate that degradation will remain a dominant source of carbon emissions independent of deforestation rates. Policies to tackle degradation should be integrated with efforts to curb deforestation and complemented with innovative measures addressing the disturbances that degrade the Amazon forest.


Assuntos
Carbono , Conservação dos Recursos Naturais , Floresta Úmida , Biodiversidade , Ciclo do Carbono , Brasil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA