Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Physiol ; 599(2): 647-665, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146903

RESUMO

KEY POINTS: We show that NMDA receptors (NMDARs) elicit a long-term increase in the firing rates of inhibitory stellate cells of the cerebellum NMDARs induce intrinsic plasticity through a Ca2+ - and CaMKII-dependent pathway that drives shifts in the activation and inactivation properties of voltage-gated Na+ (Nav ) channels An identical Ca2+ - and CaMKII-dependent signalling pathway is triggered during whole-cell recording which lowers the action potential threshold by causing a hyperpolarizing shift in the gating properties of Nav channels. Our findings open the more general possibility that NMDAR-mediated intrinsic plasticity found in other cerebellar neurons may involve similar shifts in Nav channel gating. ABSTRACT: Memory storage in the mammalian brain is mediated not only by long-lasting changes in the efficacy of neurotransmitter receptors but also by long-term modifications to the activity of voltage-gated ion channels. Activity-dependent plasticity of voltage-gated ion channels, or intrinsic plasticity, is found throughout the brain in virtually all neuronal types, including principal cells and interneurons. Although intrinsic plasticity has been identified in neurons of the cerebellum, it has yet to be studied in inhibitory cerebellar stellate cells of the molecular layer which regulate activity outflow from the cerebellar cortex by feedforward inhibition onto Purkinje cells. The study of intrinsic plasticity in stellate cells has been particularly challenging as membrane patch breakthrough in electrophysiology experiments unintentionally triggers changes in spontaneous firing rates. Using cell-attached patch recordings to avoid disruption, we show that activation of extrasynaptic N-methyl-d-aspartate receptors (NMDARs) elicits a long-term increase in the firing properties of stellate cells by stimulating a rise in cytosolic Ca2+ and activation of Ca²âº/calmodulin-dependent protein kinase II (CaMKII). An identical signalling pathway is triggered during whole-cell recording which lowers the action potential threshold by causing a hyperpolarizing shift in the gating properties of voltage-gated sodium (Nav ) channels. Together, our findings identify an unappreciated role of Nav channel-dependent intrinsic plasticity in cerebellar stellate cells which, in concert with non-canonical NMDAR signalling, provides the cerebellum with an unconventional mechanism to fine-tune motor behaviour.


Assuntos
Cerebelo , Receptores de N-Metil-D-Aspartato , Potenciais de Ação , Animais , Cerebelo/metabolismo , Técnicas de Patch-Clamp , Receptores de N-Metil-D-Aspartato/metabolismo , Sódio
2.
PLoS Comput Biol ; 16(12): e1008463, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315892

RESUMO

Cerebellar stellate cells (CSCs) are spontaneously active, tonically firing (5-30 Hz), inhibitory interneurons that synapse onto Purkinje cells. We previously analyzed the excitability properties of CSCs, focusing on four key features: type I excitability, non-monotonic first-spike latency, switching in responsiveness and runup (i.e., temporal increase in excitability during whole-cell configuration). In this study, we extend this analysis by using whole-cell configuration to show that these neurons can also burst when treated with certain pharmacological agents separately or jointly. Indeed, treatment with 4-Aminopyridine (4-AP), a partial blocker of delayed rectifier and A-type K+ channels, at low doses induces a bursting profile in CSCs significantly different than that produced at high doses or when it is applied at low doses but with cadmium (Cd2+), a blocker of high voltage-activated (HVA) Ca2+ channels. By expanding a previously revised Hodgkin-Huxley type model, through the inclusion of Ca2+-activated K+ (K(Ca)) and HVA currents, we explain how these bursts are generated and what their underlying dynamics are. Specifically, we demonstrate that the expanded model preserves the four excitability features of CSCs, as well as captures their bursting patterns induced by 4-AP and Cd2+. Model investigation reveals that 4-AP is potentiating HVA, inducing square-wave bursting at low doses and pseudo-plateau bursting at high doses, whereas Cd2+ is potentiating K(Ca), inducing pseudo-plateau bursting when applied in combination with low doses of 4-AP. Using bifurcation analysis, we show that spike adding in square-wave bursts is non-sequential when gradually changing HVA and K(Ca) maximum conductances, delayed Hopf is responsible for generating the plateau segment within the active phase of pseudo-plateau bursts, and bursting can become "chaotic" when HVA and K(Ca) maximum conductances are made low and high, respectively. These results highlight the secondary effects of the drugs applied and suggest that CSCs have all the ingredients needed for bursting.


Assuntos
4-Aminopiridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Cádmio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Cerebelo/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Células de Purkinje/efeitos dos fármacos , 4-Aminopiridina/administração & dosagem , Animais , Cádmio/administração & dosagem , Cerebelo/citologia , Cerebelo/fisiologia , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Técnicas de Patch-Clamp , Células de Purkinje/fisiologia
3.
Neural Comput ; 32(3): 626-658, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31951795

RESUMO

Cerebellar stellate cells form inhibitory synapses with Purkinje cells, the sole output of the cerebellum. Upon stimulation by a pair of varying inhibitory and fixed excitatory presynaptic inputs, these cells do not respond to excitation (i.e., do not generate an action potential) when the magnitude of the inhibition is within a given range, but they do respond outside this range. We previously used a revised Hodgkin-Huxley type of model to study the nonmonotonic first-spike latency of these cells and their temporal increase in excitability in whole cell configuration (termed run-up). Here, we recompute these latency profiles using the same model by adapting an efficient computational technique, the two-point boundary value problem, that is combined with the continuation method. We then extend the study to investigate how switching in responsiveness, upon stimulation with presynaptic inputs, manifests itself in the context of run-up. A three-dimensional reduced model is initially derived from the original six-dimensional model and then analyzed to demonstrate that both models exhibit type 1 excitability possessing a saddle-node on an invariant cycle (SNIC) bifurcation when varying the amplitude of Iapp. Using slow-fast analysis, we show that the original model possesses three equilibria lying at the intersection of the critical manifold of the fast subsystem and the nullcline of the slow variable hA (the inactivation of the A-type K+ channel), the middle equilibrium is of saddle type with two-dimensional stable manifold (computed from the reduced model) acting as a boundary between the responsive and non-responsive regimes, and the (ghost of) SNIC is formed when the hA-nullcline is (nearly) tangential to the critical manifold. We also show that the slow dynamics associated with (the ghost of) the SNIC and the lower stable branch of the critical manifold are responsible for generating the nonmonotonic first-spike latency. These results thus provide important insight into the complex dynamics of stellate cells.


Assuntos
Cerebelo/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Cerebelo/citologia , Humanos , Neurônios/citologia
4.
Cell Rep ; 36(5): 109483, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348157

RESUMO

Loss-of-function variants in the gene SCN2A, which encodes the sodium channel NaV1.2, are strongly associated with autism spectrum disorder and intellectual disability. An estimated 20%-30% of children with these variants also suffer from epilepsy, with altered neuronal activity originating in neocortex, a region where NaV1.2 channels are expressed predominantly in excitatory pyramidal cells. This is paradoxical, as sodium channel loss in excitatory cells would be expected to dampen neocortical activity rather than promote seizure. Here, we examined pyramidal neurons lacking NaV1.2 channels and found that they were intrinsically hyperexcitable, firing high-frequency bursts of action potentials (APs) despite decrements in AP size and speed. Compartmental modeling and dynamic-clamp recordings revealed that NaV1.2 loss prevented potassium channels from properly repolarizing neurons between APs, increasing overall excitability by allowing neurons to reach threshold for subsequent APs more rapidly. This cell-intrinsic mechanism may, therefore, account for why SCN2A loss-of-function can paradoxically promote seizure.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Neocórtex/citologia , Células Piramidais/metabolismo , Potenciais de Ação , Animais , Dendritos/metabolismo , Deleção de Genes , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
eNeuro ; 6(3)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110133

RESUMO

Neuronal excitability in the vertebrate brain is governed by the coordinated activity of both ligand- and voltage-gated ion channels. In the cerebellum, spontaneous action potential (AP) firing of inhibitory stellate cells (SCs) is variable, typically operating within the 5- to 30-Hz frequency range. AP frequency is shaped by the activity of somatodendritic A-type K+ channels and the inhibitory effect of GABAergic transmission. An added complication, however, is that whole-cell recording from SCs induces a time-dependent and sustained increase in membrane excitability making it difficult to define the full range of firing rates. Here, we show that whole-cell recording in cerebellar SCs of both male and female mice augments firing rates by reducing the membrane potential at which APs are initiated. AP threshold is lowered due to a hyperpolarizing shift in the gating behavior of voltage-gated Na+ channels. Whole-cell recording also elicits a hyperpolarizing shift in the gating behavior of A-type K+ channels which contributes to increased firing rates. Hodgkin-Huxley modeling and pharmacological experiments reveal that gating shifts in A-type K+ channel activity do not impact AP threshold, but rather promote channel inactivation which removes restraint on the upper limit of firing rates. Taken together, our work reveals an unappreciated impact of voltage-gated Na+ channels that work in coordination with A-type K+ channels to regulate the firing frequency of cerebellar SCs.


Assuntos
Potenciais de Ação/fisiologia , Cerebelo/fisiologia , Ativação do Canal Iônico , Neurônios/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Canais de Sódio Disparados por Voltagem/fisiologia , Animais , Feminino , Masculino , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Modelos Neurológicos
6.
Neuron ; 102(5): 976-992.e5, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31053408

RESUMO

Neurotransmitter-gated ion channels are allosteric proteins that switch on and off in response to agonist binding. Most studies have focused on the agonist-bound, activated channel while assigning a lesser role to the apo or resting state. Here, we show that nanoscale mobility of resting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (AMPA receptors) predetermines responsiveness to neurotransmitter, allosteric anions and TARP auxiliary subunits. Mobility at rest is regulated by alternative splicing of the flip/flop cassette of the ligand-binding domain, which controls motions in the distant AMPA receptor N-terminal domain (NTD). Flip variants promote moderate NTD movement, which establishes slower channel desensitization and robust regulation by anions and auxiliary subunits. In contrast, greater NTD mobility imparted by the flop cassette acts as a master switch to override allosteric regulation. In AMPA receptor heteromers, TARP stoichiometry further modifies these actions of the flip/flop cassette generating two functionally distinct classes of partially and fully TARPed receptors typical of cerebellar stellate and Purkinje cells.


Assuntos
Células de Purkinje/metabolismo , Receptores de AMPA/metabolismo , Regulação Alostérica , Sítio Alostérico , Processamento Alternativo , Animais , Cerebelo/citologia , Cerebelo/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Células HEK293 , Humanos , Ativação do Canal Iônico , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Camundongos , Microscopia de Força Atômica , Técnicas de Patch-Clamp , Domínios Proteicos , Isoformas de Proteínas/genética , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores de AMPA/genética , Receptores de AMPA/ultraestrutura
7.
Front Aging Neurosci ; 6: 142, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071551

RESUMO

The limbic system is presumed to have a central role in cognitive performance, in particular memory. The purpose of this study was to investigate the relationship between limbic white matter microstructure and neuropsychological function in temporal-lobe epilepsy (TLE) patients using diffusion tensor imaging (DTI). Twenty-one adult TLE patients, including 7 non-lesional (nlTLE) and 14 with unilateral mesial temporal sclerosis (uTLE), were studied with both DTI and hippocampal T2 relaxometry. Correlations were performed between fractional anisotropy (FA) of the bilateral fornix and cingulum, hippocampal T2, neuropsychological tests. Positive correlations were observed in the whole group for the left fornix and processing speed index. In contrast, memory tests did not show significant correlations with DTI findings. Subgroup analysis demonstrated an association between the left fornix and processing speed in nlTLE but not uTLE. No correlations were observed between hippocampal T2 and test scores in either the TLE group as a whole or after subgroup analysis. Our findings suggest that integrity of the left fornix specifically is an important anatomical correlate of cognitive function in TLE patients, in particular patients with nlTLE.

8.
Neuron ; 82(3): 635-44, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24811382

RESUMO

In central mammalian neurons, activation of metabotropic glutamate receptor type1 (mGluR1) evokes a complex synaptic response consisting of IP3 receptor-dependent Ca(2+) release from internal Ca(2+) stores and a slow depolarizing potential involving TRPC3 channels. It is largely unclear how mGluR1 is linked to its downstream effectors. Here, we explored the role of stromal interaction molecule 1 (STIM1) in regulating neuronal Ca(2+) signaling and mGluR1-dependent synaptic transmission. By analyzing mouse cerebellar Purkinje neurons, we demonstrate that STIM1 is an essential regulator of the Ca(2+) level in neuronal endoplasmic reticulum Ca(2+) stores. Both mGluR1-dependent synaptic potentials and IP3 receptor-dependent Ca(2+) signals are strongly attenuated in the absence of STIM1. Furthermore, the Purkinje neuron-specific deletion of Stim1 causes impairments in cerebellar motor behavior. Together, our results demonstrate that in the mammalian nervous system STIM1 is a key regulator of intracellular Ca(2+) signaling, metabotropic glutamate receptor-dependent synaptic transmission, and motor coordination.


Assuntos
Sinalização do Cálcio/fisiologia , Cerebelo/fisiologia , Glicoproteínas de Membrana/fisiologia , Atividade Motora/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Transmissão Sináptica/fisiologia , Animais , Canais de Cálcio , Cerebelo/citologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Molécula 1 de Interação Estromal
9.
Epilepsy Res ; 102(3): 216-20, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23021381

RESUMO

The nature of the relationship between childhood febrile seizures (CFSs) and temporal lobe epilepsy (TLE) remains unknown. The purpose of this study was to perform a comprehensive analysis of measures of structural changes of the hippocampus and limbic white matter to determine whether structural abnormalities previously demonstrated in TLE were present in adults with isolated CFS. Twenty-three adults with past CFS but no history of nonfebrile seizures and 21 controls underwent research MRI for measurement of volume, T2 and mean diffusivity of the hippocampus and fractional anisotropy of the fornix and cingulum. No significant group differences were found in any of the measured parameters. These findings suggest that structural abnormalities of the hippocampus and limbic white matter that have been demonstrated in TLE are not associated with isolated CFS.


Assuntos
Epilepsia do Lobo Temporal/patologia , Sistema Límbico/patologia , Convulsões Febris/patologia , Adolescente , Adulto , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA