Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell Biochem ; 412(1-2): 297-305, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26728996

RESUMO

The mammalian DNA mismatch repair (MMR) system consists of a number of proteins that play important roles in repair of base pair mismatch mutations and in maintenance of genomic integrity. A defect in this system can cause genetic instability, which can lead to carcinogenesis. For instance, a germline mutation in one of the mismatch repair proteins, especially MLH1 or MSH2, is responsible for hereditary non-polyposis colorectal cancer. These MMR proteins also play an important role in the induction of apoptosis. Accordingly, altered expression of or a defect in MLH1 or MSH2 may confer resistance to anti-cancer drugs used in chemotherapy. We hypothesized that the ability of these two MMR proteins to regulate apoptosis are interdependent. Moreover, a defect in either one may confer resistance to chemotherapy by an inability to trigger apoptosis. To this end, we studied three cell lines-SW480, LoVo, and HTC116. These cell lines were selected based on their differential expression of MLH1 and MSH2 proteins. SW480 expresses both MLH1 and MSH2; LoVo expresses only MLH1 but not MSH2; HCT116 expresses only MSH2 but not MLH1 protein. MTT assays, a measure of cytotoxicity, showed that there were different cytotoxic effects of an anti-cancer drug, etoposide, on these cell lines, effects that were correlated with the MMR status of the cells. Cells that are deficient in MLH1 protein (HCT116 cells) were resistant to the drug. Cells that express both MLH1 and MSH2 proteins (SW480 cells) showed caspase-3 cleavage, an indicator of apoptosis. Cells that lack MLH1 (HCT116 cells) did not show any caspase-3 cleavage. Expression of full-length MLH1 protein was decreased in MMR proficient (SW480) cells during apoptosis; it remained unchanged in cells that lack MSH2 (LoVo cells). The expression of MSH2 protein remained unchanged during apoptosis both in MMR proficient (SW480) and deficient (HCT116) cells. Studies on translocation of MLH1 protein from nucleus to cytosolic fraction, an indicator of apoptosis, showed that MLH1 translocation only occurred in MMR proficient (SW480) cells upon induction of apoptosis further suggested a MSH2 dependent role of MLH1 in apoptosis. These data suggest a role of MLH1 in mediation of apoptosis in a MSH2-dependent manner. Taken together, our data supported an interdependence of mismatch repair proteins, particularly MLH1 and MSH2, in the mediation of apoptosis in human colorectal carcinoma cell lines.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Apoptose/fisiologia , Neoplasias Colorretais/patologia , Reparo de Erro de Pareamento de DNA , Proteína 2 Homóloga a MutS/fisiologia , Proteínas Nucleares/fisiologia , Antineoplásicos/uso terapêutico , Caspase 3/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Etoposídeo/uso terapêutico , Humanos , Proteína 1 Homóloga a MutL , Proteólise
2.
J Toxicol Environ Health A ; 75(6): 324-39, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22480170

RESUMO

Acrylamide (AA) is an industrial chemical that has been extensively investigated for central nervous system (CNS), reproductive, and genetic toxicity. However, AA effects on the liver, a major organ of drug metabolism, have not been adequately explored. In addition, the role of mitochondria in AA-mediated toxicity is still unclear. Changes in expression levels of genes associated with hepatic mitochondrial function of male transgenic Big Blue (BB) mice administered 500 mg/L AA or an equimolar concentration (600 mg/L) of its reactive metabolite glycidamide (GA) in drinking water for 3 and 4 wk, respectively, were examined. Transcriptional profiling of 542 mitochondria-related genes indicated a significant downregulation of genes associated with the 3-beta-hydroxysteroid dehydrogenase family in AA- and GA-treated mice, suggesting a possible role of both chemicals in altering hepatic steroid metabolism in BB mice. In addition, genes associated with lipid metabolism were altered by both treatments. Interestingly, only the parental compound (AA) significantly induced expression levels of genes associated with oxidative phosphorylation, in particular ATP synthase, which correlated with elevated ATP levels, indicating an increased energy demand in liver during AA exposure. Acrylamide-treated mice also showed significantly higher activity of glutathione S-transferase in association with decreased levels of reduced glutathione (GSH), which may imply an enhanced rate of conjugation of AA with GSH in liver. These results suggest different hepatic mechanisms of action of AA and GA and provide important insights into the involvement of mitochondria during their exposures.


Assuntos
Acrilamida/toxicidade , Compostos de Epóxi/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mutagênicos/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ingestão de Líquidos/efeitos dos fármacos , Perfilação da Expressão Gênica , Glutationa/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/genética , Estresse Oxidativo , Fosforilação/genética , Análise Serial de Proteínas , Reação em Cadeia da Polimerase em Tempo Real , Esteroides/metabolismo
3.
Arch Biochem Biophys ; 510(1): 11-8, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21466783

RESUMO

Glucosamine is used for alleviating pain in osteoarthritis. Clinical trials have reported that glucosamine has equivocal efficacy. Glucosamine is also used in cell cultures to stimulate hexosamine flux and protein O-glycosylation, but at many-fold greater concentrations than those in human plasma following oral dosing. Lean Zucker rats were dosed orally for 6 weeks with glucosamine hydrochloride at doses (0-600 mg/kg/day) that produced peak serum concentrations of <1-35 µM, spanning the human exposure range. Relative expression of both TGFß1 and CTGF mRNA were significantly increased up to 2.3-fold in liver, kidney and articular cartilage when evaluated 4h after final dose. Apparent threshold serum glucosamine (C(max)) concentration required to increase TGFß1 expression in cartilage was 10-20 µM. These increases were associated with significant increases in UDP-N-acetylglucosamine concentrations suggesting increased hexosamine flux. Both TGFß1 and CTGF are mediators of chondrocyte proliferation and cartilage repair. Study demonstrates that oral glucosamine doses that produce clinically relevant serum glucosamine concentrations can induce tissue TGFß1 and CTGF expression in vivo and provides a mechanistic rationale for reported beneficial effects of glucosamine therapy. Induction of renal TGFß1 and CTGF mRNA suggests that potential sclerotic side-effects may occur following consumption of potent glucosamine preparations.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/genética , Glucosamina/administração & dosagem , Glucosamina/farmacologia , Rim/efeitos dos fármacos , Fator de Crescimento Transformador beta1/genética , Administração Oral , Animais , Cartilagem Articular/metabolismo , Glucosamina/sangue , Glucosamina/urina , Humanos , Rim/metabolismo , Masculino , Osteoartrite/tratamento farmacológico , RNA Mensageiro/genética , Ratos , Ratos Zucker , Regulação para Cima/efeitos dos fármacos
4.
Food Chem Toxicol ; 50(5): 1439-46, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22306919

RESUMO

Green tea extract (GTE) has been advocated as a hepatoprotective compound and a possible therapeutic agent for acetaminophen (APAP) overdose. This study was conducted to determine if GTE can provide protection against APAP-induced hepatotoxicity. Three different exposure scenarios were tested. The first involved administering APAP (150 mg/kg, orally) to mice followed 6h later by GTE (500 or 1000 mg/kg). The other two involved administering GTE prior to the APAP dose. GTE (500 or 1000 mg/kg, orally) was administered 3h prior to APAP (200 mg/kg, orally) or for three consecutive days (once-daily) followed by APAP (300 mg/kg) on the fourth day. Indices of hepatotoxicity were assessed 24h after the APAP dose. GTE potentiated APAP-induced hepatotoxicity when administered after the APAP dose. GTE caused significant glutathione depletion and this effect likely contributed to the observed potentiation. In contrast, GTE provided protection against APAP-induced hepatotoxicity when administered prior to the APAP dose. GTE dramatically decreased APAP covalent binding to protein indicating that less reactive metabolite was available to cause hepatocellular injury. These results highlight the potential for drug-dietary supplement interactions and the importance of testing multiple exposure scenarios to adequately model different types of potential interactions.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Chá/química , Animais , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Glutationa/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos
5.
J Exp Clin Cancer Res ; 30: 100, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22017758

RESUMO

BACKGROUND: A broad population-based assay to detect individuals with Lynch Syndrome (LS) before they develop cancer would save lives and healthcare dollars via cancer prevention. LS is caused by a germline mutation in a DNA mismatch repair (MMR) gene, especially protein truncation-causing mutations involving MSH2 or MLH1. We showed that immortalized lymphocytes from LS patients have reduced levels of full-length MLH1 or MSH2 proteins. Thus, it may be feasible to identify LS patients in a broad population-based assay by detecting reduced levels of MMR proteins in lymphocytes. METHODS: Accordingly, we determined whether MSH2 and MLH1 proteins can also be detected in fresh lymphocytes. A quantitative western blot assay was developed using two commercially available monoclonal antibodies that we showed are specific for detecting full-length MLH1 or MSH2. To directly determine the ratio of the levels of these MMR proteins, we used both antibodies in a multiplex-type western blot. RESULTS: MLH1 and MSH2 levels were often not detectable in fresh lymphocytes, but were readily detectable if fresh lymphocytes were first stimulated with PHA. In fresh lymphocytes from normal controls, the MMR ratio was ~1.0. In fresh lymphocytes from patients (N > 50) at elevated risk for LS, there was a bimodal distribution of MMR ratios (range: 0.3-1.0). CONCLUSIONS: Finding that MMR protein levels can be measured in fresh lymphocytes, and given that cells with heterozygote MMR mutations have reduced levels of full-length MMR proteins, suggests that our immunoassay could be advanced to a quantitative test for screening populations at high risk for LS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Reparo de Erro de Pareamento de DNA , Detecção Precoce de Câncer/métodos , Proteína 2 Homóloga a MutS/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Células Cultivadas , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Reparo de Erro de Pareamento de DNA/genética , Mutação em Linhagem Germinativa , Células HCT116 , Humanos , Linfócitos/metabolismo , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/genética
6.
Mitochondrion ; 9(2): 149-58, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19460291

RESUMO

Usnic acid is a lichen metabolite used as a weight-loss dietary supplement due to its uncoupling action on mitochondria. However, its use has been associated with severe liver disorders in some individuals. Animal studies conducted thus far evaluated the effects of usnic acid on mitochondria primarily by measuring the rate of oxygen consumption and/or ATP generation. To obtain further insight into usnic acid-mediated effects on mitochondria, we examined the expression levels of 542 genes associated with mitochondrial structure and functions in liver of B6C3F(1) female mice using a mitochondria-specific microarray. Beginning at 8 weeks of age, mice received usnic acid at 0, 60, 180, and 600 ppm in ground, irradiated 5LG6 diet for 14 days. Microarray analysis showed a significant effect of usnic acid on the expression of several genes only at the highest dose of 600 ppm. A prominent finding of the study was a significant induction of genes associated with complexes I through IV of the electron transport chain. Moreover, several genes involved in fatty acid oxidation, the Krebs cycle, apoptosis, and membrane transporters were over-expressed. Usnic acid is a lipophilic weak acid that can diffuse through mitochondrial membranes and cause a proton leak (uncoupling). The up-regulation of complexes I-IV may be a compensatory mechanism to maintain the proton gradient across the mitochondrial inner membrane. In addition, induction of fatty acid oxidation and the Krebs cycle may be an adaptive response to uncoupling of mitochondria.


Assuntos
Benzofuranos/farmacologia , Perfilação da Expressão Gênica , Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Desacopladores/farmacologia , Animais , Metabolismo Energético/genética , Feminino , Redes e Vias Metabólicas/genética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA