Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 487: 116978, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795847

RESUMO

Non-small cell lung cancer (NSCLC) is a complex malignancy with a high degree of heterogeneity, representing approximately 85% of all lung cancer cases. The treatment landscape for NSCLC has been revolutionised by incorporating targeted and immunotherapies; however, novel therapeutic modalities are consistently needed to enhance the treatment outcomes. Indeed, alternative anti-cancer therapies involving natural products have drawn the attention of clinicians and scientists owing to their remarkable chemopreventive potential, often displaying minimal toxicity. D-carvone (CN) is one such natural product that has exhibited numerous promising therapeutic benefits, yet its efficacy against NSCLC remains enigmatic. In the present study, network pharmacological studies and molecular docking in conjunction with in-vitro validation were used to elucidate the underlying mechanism of action of CN comprehensively. Different databases revealed a total of 77 putative anti-NSCLC targets of CN. The identified core targets were utilised to construct a "Compound- Target- Disease" network by Cytoscape (v3.9.0). Further analysis identified 5 core/ hub targets of CN including JAK2, ERK1, ESR1, GSK3B and HSP90AA1. Molecular docking indicated a strong binding interaction of the compound with these core targets. Also, Gene Ontology and KEGG analysis validated the involvement of multiple biological processes. Additionally, CN significantly inhibited cell proliferation, clonogenicity, and wound healing potential while promoting apoptosis in a dose-dependent manner in H1299 and A549 cell lines as examined by flow cytometry, morphological assessment, and western blotting. In conclusion, this study delineates the therapeutic effects of CN on NSCLC, thus highlighting CN as a putative drug candidate for further analysis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Monoterpenos Cicloexânicos , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Farmacologia em Rede , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Monoterpenos Cicloexânicos/farmacologia , Células A549 , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Mapas de Interação de Proteínas , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
Drug Chem Toxicol ; : 1-9, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38938090

RESUMO

Cardiotoxicity is a well-established adverse effect of several drugs across multiple therapeutic indications. It is particularly prevalent following anticancer therapy. In order to evaluate the changes in cellular metabolism associated with methotrexate cardiotoxicity, we treated Wistar rats with a single high dose of methotrexate (HDMTX), and after five days, the animals were sacrificed. We then analyzed the cardiotoxicity parameters in serum like Cardiac enzymes(CK-MB, Troponin T, ALP), Inflammatory markers (TNF-α and IL-6), oxidative stress markers (NO, NOX-2), histopathology and cardiac tissue with the goal of identifying a metabolic signature of cardiotoxicity using discovery-based metabolomics. The biochemical parameters for cardiac enzymes, oxidative stress and inflammatory markers showed a significant increase in all three categories in rats treated with HDMTX. These findings were mirrored in the histopathological analysis confirming cardiotoxicity due to HDMTX. The results showed a total of 95 metabolites that were found to be significantly (p < 0.05) modulated: either up- or downregulated in the HDMTX-treated group when compared with the control group. Using integrated pathway analysis we found these metabolites were associated with many important cardiac tissue metabolic pathways, such as the malate aspartate shuttle, taurine and hypotaurine metabolism, betaine metabolism, spermidine biosynthesis, and homocysteine degradation. Among them, L-arginine, homocysteine, and betaine were significantly upregulated, suggesting their possible association with cardiac tissue injury. Overall, we provided evidence for using untargeted metabolomics to identify novel metabolites associated with HDMTX cardiac toxicity.

3.
Saudi Pharm J ; 32(3): 101971, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38357701

RESUMO

Triple-negative breast cancer (TNBC) comprises 10 % to 20 % of breast cancer, however, it is more dangerous than other types of breast cancer, because it lacks druggable targets, such as the estrogen receptors (ER) and the progesterone receptor (PR), and has under expressed receptor tyrosine kinase, ErbB2. Present targeted therapies are not very effective and other choices include invasive procedures like surgery or less invasive ones like radiotherapy and chemotherapy. This study investigated the potential anticancer activity of some novel quinazolinone derivatives that were designed on the structural framework of two approved anticancer drugs, Ispinesib (KSP inhibitor) and Idelalisib (PI3Kδ inhibitor), to find out solutions for TNBC. All the designed derivatives (3a-l) were subjected to extra precision molecular docking and were synthesized and spectrally characterized. In vitro enzyme inhibition assay of compounds (3a, 3b, 3e, 3 g and 3 h) revealed their nanomolar inhibitory potential against the anticancer targets, KSP and PI3Kδ. Using MTT assay, the cytotoxic potential of compounds 3a, 3b and 3e were found highest against MDA-MB-231 cells with an IC50 of 14.51 µM, 16.27 µM, and 9.97 µM, respectively. Remarkably, these compounds were recorded safe against the oral epithelial normal cells with an IC50 values of 293.60 µM, 261.43 µM, and 222 µM, respectively. The anticancer potential of these compounds against MDA-MB-231 cells was revealed to be associated with their apoptotic activity. This was established by examination with the inverted microscope that revealed the appearance of various apoptotic features like cell shrinkage, apoptotic bodies, and membrane blebbing. Using flow cytometry, the Annexin V/PI-stained cancer cells showed an increase in early and late apoptotic cells. In addition, DNA fragmentation was revealed to occur after treatment with the tested compounds by gel electrophoresis. The relative gene expression of pro-apoptotic and anti-apoptotic genes revealed an overexpression of the P53 and BAX genes and a downregulation of the BCL-2 gene by real-time PCR. So, this work proved that compounds 3a, 3b, and 3e could be developed as anticancer candidates, via their P53-dependent apoptotic activity.

4.
Int J Med Sci ; 20(1): 142-150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36619226

RESUMO

Metformin is the most often prescribed drug for people with type 2 diabetes (T2D). More than 120 million patients with T2D use metformin worldwide. However, monotherapy fails to achieve glycemic control in a third of the treated patients. Genetics contribute to some of the inter-individual variations in glycemic response to metformin. Numerous pharmacogenetic studies have demonstrated that variations in genes related to pharmacokinetics and pharmacodynamics of metformin's encoding transporters are mainly associated with metformin response. The goal of this review is to evaluate the current state of metformin pharmacogenetics and metabolomics research, discuss the clinical and scientific issues that need to be resolved in order to increase our knowledge of patient response variability to metformin, and how to improve patient outcomes. Metformin's hydrophilic nature and absorption as well as its action mechanism and effectiveness on T2D initiation are discussed. The impacts of variations associated with various genes are analysed to identify and evaluate the effect of genetic polymorphisms on the therapeutic activity of metformin. The metabolic pattern of T2D and metformin is also indicated. This is to emphasise that studies of pharmacogenetics and metabolomics could expand our knowledge of metformin response in T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Hipoglicemiantes/uso terapêutico , Metabolômica , Metformina/uso terapêutico , Farmacogenética
5.
Molecules ; 27(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36235206

RESUMO

Background: Due to the high expense, less effectiveness and more side effects of available synthetic medicine, the researchers and communities are focusing on phyto-based natural bioactive compounds, which are considered safer for the treatment of syndromes and chronic diseases. Aim: The current project was aimed to determine the phytochemicals constituents available in the aerial parts of methanol extract of Carduus edelbergii via GC-MS, fabrication of AuNPs mediated with the mentioned extract; characterization and evaluation of antimicrobial, antioxidant and antidiabetic potency of the synthesized AuNPs. Methods: Confirmation of green synthesis of AuNPs, functional groups responsible for the reduction in Au+, size and crystallinity, morphology and quantity of gold (Au) were carried out by Ultraviolet-Visible (UV-Vis) spectroscopy, Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and dispersive X-ray (EDX), respectively, whereas in vitro antioxidant characteristics were assessed by DPPH and ABTS assays. Wistar albino rats were used to test the anti-diabetic properties of the methanol extract and AuNPs. Results: GC-MS revealed that the diluted methanol extract of Carduus edelbergii consists of about 19 chemical constituents. Among the identified compounds, the 13-Docosenoic acid, methyl ester, (Z)­has the highest concentration (38.16%), followed by 9-Octadecenoic acid, methyl ester, (E)­(15.72%) and n-Hexadecanoic acid (15.07%). Methanol extract and its fabricated nanoparticles showed significant antioxidant and antimicrobial activities. In vivo antidiabetic study revealed a noteworthy (p < 0.05) decline in body weight and HDL and elevated concentration of blood glucose, bilirubin, creatinine, urea, triglyceride, VLDL, LDL, ALP, ALT and AST in diabetic control. The said changes were recovered significantly (p < 0.05) by treatment of diabetic rats with methanol extract (150 and 300 mg/Kg BW) and AuNPs of Carduus edelbergii (5 and 10 mg/Kg BW). Conclusion: The green synthesized AuNPs exhibit significant antioxidant, antimicrobial and antidiabetic characteristics.


Assuntos
Carduus , Diabetes Mellitus Experimental , Nanopartículas Metálicas , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bilirrubina , Glicemia , Creatinina , Diabetes Mellitus Experimental/tratamento farmacológico , Ésteres , Ouro/química , Química Verde/métodos , Hipoglicemiantes/farmacologia , Nanopartículas Metálicas/química , Metanol , Ácido Oleico , Ácido Palmítico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Triglicerídeos , Ureia
6.
Saudi Pharm J ; 29(5): 418-426, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34135667

RESUMO

OBJECTIVES: Epilepsy is a neurological disease characterized by sudden, abnormal, and hyper- discharges in the central nervous system (CNS). Valproic acid (VPA) is commonly used as a broad-spectrum antiepileptic therapeutic. However, in many cases, patients develop resistance to VPA treatment due to overwhelming oxidative stress, which in turn might be a major catalyst for disease progression. Therefore, antioxidants can potentially become therapeutic agents by counteracting reactive oxygen species (ROS)-mediated damage. The present study is aimed to evaluate the potential antiepileptic effect of astaxanthin (ASTA) in pentylenetetrazol (PTZ) induced epileptic model rats that are chronically treated with VPA for 8 weeks. METHOD: Fifty-male Wistar rats were randomly divided into five groups: Non-PTZ group, PTZ, PTZ/VPA, PTZ/ASTA, and PTZ/VPA/ASTA treated groups. RESULTS: PTZ/VPA treated group showed a neuroprotective effect with improvement in antioxidant levels, behavioral test, and histopathological changes induced by PTZ. VPA also exhibited an anti-inflammatory effect as its treatment resulted in the reduction of tumor necrosis factor-α (TNF-α). ASTA exhibited an anticonvulsant effect and enhanced anti-inflammatory effect as compared to VPA. During the combined therapy, ASTA potentiated the antiepileptic effect of the VPA by reducing the oxidative stress and TNF-α as well as increased the glutathione (GSH) levels. Also, there were substantial improvements in the behavioral and histopathological changes in the VPA/ASTA treated group as compared to the VPA treated group. CONCLUSION: ASTA could have an antiepileptic and anti-inflammatory effect by reducing ROS generation. Therefore, co-administration of both the therapeutics (VPA/ASTA) has a synergistic effect in treating epilepsy and could potentially minimize recurrence and/or exacerbation of seizures.

7.
Saudi Pharm J ; 28(8): 916-926, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32792836

RESUMO

Available antiulcer medications reveal partial efficacy and numerous adverse reactions. Tetramethylpyrazine (TMP) was known for its potential antioxidant, anti-inflammatory and angiogenic properties. The aim of current study was to investigate the potential gastroprotective effect of TMP against indomethacin-induced gastric ulcer in rats with possible underlying mechanisms. TMP was tested at 3 doses (15, 30 & 60 mg/kg/d po) three days before indomethacin challenge (25 mg/kg ip). Gastric tissue was evaluated morphologically and histopathologically. Oxidative statuses were assessed via glutathione content (GSH), malondialdhyde (MDA) and catalase (CAT) activity, while TNFα and IL-6 were measured as inflammatory mediators. Gastric PGE2 was investigated in addition to vascular endothelial growth factor (VEGF). TMP was effective (at 30 and 60 mg/kg/d) in promoting mucus secretion and preventing histopathologic changes induced by indomethacin. Mechanistically, TMP significantly enhanced GSH content and CAT activity while reducing lipid peroxidation as expressed by MDA concentration. Moreover, TMP effectively reduced TNFα, IL-6 and intracellular adhesion molecule (ICAM-1) concentrations. On the other hand, TMP enhanced both COX-1 and PGE2 and encouraged angiogenesis via increasing VEGF expression. In conclusion, TMP possesses a protective effect against indomethacin-induced gastric ulcer. This could be explained - at least partly - by its antioxidant, anti-inflammatory and angiogenic effects.

8.
Cancer Cell Int ; 19: 191, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31367189

RESUMO

BACKGROUND: Doxorubicin (DOX) is one of the most important anticancer agents used in treating breast cancer. However, chronic cardiotoxicity and multidrug resistance limit the chemotherapeutic use of DOX. METHODS: This study aimed to evaluate the capability of calcium channel blocker diltiazem (DIL) to reverse DOX resistance in breast cancer MCF-7 cells and to confer protection against DOX-induced cardiotoxicity in Wistar rats. For this purpose, we explored the effects of DOX on cell cycle phase distribution and expression of ABCB1, FOXO3a, and p53 genes in the presence and absence of DIL (20 µg/ml) and studied the ability of DIL to prevent DOX-induced cardiotoxicity after a single injection of DOX (15 mg/kg) in male Wister rats. RESULTS: We found that compared with DOX alone treatment, DIL + DOX treatment down regulated the ABCB1 gene expression by > fourfold but up regulated the FOXO3a and p53 genes expression by 1.5 fold. DIL treatment conferred protection against DOX-induced cardiotoxicity, as indicated by a decrease in the levels of the cardiac enzyme creatine kinase MB and malondialdehyde and an increase in the total antioxidant capacity and glutathione peroxidase levels. These biochemical results were further confirmed by the histopathological investigation of cardiac cells, which showed normal cardiac cells with central vesicular nuclei and prevention of DOX-induced disruption of normal cardiac architecture in the DIL to DOX group. CONCLUSIONS: Taken together, our results indicate that DIL treatment can reverse the resistance of breast cancer cells to the therapeutic effects of DOX and can protect against DOX-induced cardiotoxicity in rats.

9.
Clin Exp Pharmacol Physiol ; 46(5): 496-505, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30724380

RESUMO

Doxorubicin (DOX) is the most commonly used anticancer drug; however, it has limited use because prolonged administration may result in severe cardiotoxicity. Simvastatin (SIM), generally prescribed for hypercholesterolaemia, has also shown salubrious results in the monotherapy or combinational drug therapy of different cancers in various models. Nanoparticle drug delivery systems are a novel way of improving therapeutics and also improving the absorption and specificity of drugs towards tumour cells. In this study, we exploited this technology to increase drug specificity and minimize imminent adverse effects. In this study, the antitumour activity of the combination formulas of DOX and SIM, either loaded in water (DOX-SIM-Solution) or nanoemulsions (NEs) (DOX-SIM-NE), was evaluated in a Swiss albino mouse model of Ehrlich ascites carcinoma. The anticancer effect was assessed by quantifying the change in body weight, mean survival time, and percent increase in lifespan (%ILS), determining haematological and serum biochemical parameters (liver function test, kidney function test and lipid profile parameters) as well as studying the histopathological alterations in liver tissues. We observed a clear increase in %ILS of the DOX-SIM-Solution group (265.30) that was double the %ILS of the DOX-SIM-NE group (134.70). However, DOX-SIM-NE had a non-toxic effect on the haematological parameters, whereas DOX-SIM-Solution increased the levels of haemoglobin and lymphocytes. Furthermore, the encapsulation of SIM and DOX into NEs improved the levels of all serum biochemical parameters compared to the DOX-SIM-Solution. A reduction in the side effects of DOX-SIM-NE on the liver was also established using light microscopy, which revealed that the morphologies of the hepatocytes of the mice were less affected by administration of the DOX-SIM-NE treatment than with the DOX-SIM-Solution treatment. The study showed that incorporating SIM into the DOX-loaded-NE formulation remarkably improved its efficiency and simultaneously reduced its adverse effects.


Assuntos
Carcinoma de Ehrlich/tratamento farmacológico , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Nanoestruturas/química , Sinvastatina/química , Sinvastatina/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Peso Corporal/efeitos dos fármacos , Carcinoma de Ehrlich/patologia , Carcinoma de Ehrlich/fisiopatologia , Modelos Animais de Doenças , Doxorrubicina/uso terapêutico , Sinergismo Farmacológico , Emulsões , Feminino , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiopatologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/fisiopatologia , Camundongos , Sinvastatina/uso terapêutico , Taxa de Sobrevida
10.
Biochim Biophys Acta ; 1859(7): 883-95, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27107895

RESUMO

Luminal-like breast cancer expressing estrogen receptor α (ERα) is among the aggressive breast tumor subtypes and shows poor prognosis. KLF17 plays a key role in breast cancer inhibition. However, the underlying mechanisms by which KLF17 control breast cancer progression remains unknown. Here, we show that KLF17 antagonizes ERα-dependent signaling to suppress breast cancer progression. KLF17 alters ERα-binding pattern throughout the genome and co-localizes with ERα on chromatin. Mechanistically, KLF17 forms a complex with ERα that interferes with ERα binding on chromatin and thereby attenuates ERα-dependent pathway. KLF17 increases the methylation status of ERE target promoters by recruiting transcriptional corepressor N-CoR/HDAC1 complex and prevents RNA polymerase II binding to suppress ERα-dependent transcriptional activation. Importantly, KLF17 preoccupies a subset of ERE target gene promoters and inhibits interaction of ERα with chromatin. Conversely, estrogen signaling suppresses KLF17 transcription via ERα/HDAC1-dependent mechanism. KLF17 expression negatively correlates with ERα target genes in multiple breast cancer samples. Enhanced KLF17 expression sensitizes ERα-positive breast cancer cells to endocrine therapy. KLF17 expression is downregulated in luminal breast cancer subtypes and is associated with poor survival rates in breast cancer patients. Taken together, these results indicate that KLF17-ERα interaction plays a potential role in inhibition of ERα-dependent breast cancer progression and suggests an improved strategy for treatment of ERα-positive breast cancer patients.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Cromatina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/fisiologia , Fatores de Transcrição/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Progressão da Doença , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas
11.
J Biol Chem ; 290(35): 21336-51, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25911104

RESUMO

Metastasis, which is controlled by concerted action of multiple genes, is a complex process and is an important cause of cancer death. Krüppel-like factor 17 (KLF17) is a negative regulator of metastasis and epithelial-mesenchymal transition (EMT) during cancer progression. However, the underlying molecular mechanism and biological relevance of KLF17 in cancer cells are poorly understood. Here, we show that tumor suppressor protein p53 plays an integral role to induce KLF17 expression in non-small cell lung cancer (NSCLC). p53 is recruited to the KLF17 promoter and results in the formation of p53-DNA complex. p53 enhances binding of p300 and favors histone acetylation on the KLF17 promoter. Mechanistically, p53 physically interacts with KLF17 and thereby enhances the anti-metastatic function of KLF17. p53 empowers KLF17-mediated EMT genes transcription via enhancing physical association of KLF17 with target gene promoters. Nutlin-3 recruits KLF17 to EMT target gene promoters and results in the formation of KLF17-DNA complex via a p53-dependent pathway. p53 depletion abrogates DNA binding affinity of KLF17 to EMT target gene promoters. KLF17 is critical for p53 cellular activities in NSCLC. Importantly, KLF17 enhances p53 transcription to generate a novel positive feedback loop. KLF17 depletion accelerates lung cancer cell growth in response to chemotherapy. Mechanistically, we found that KLF17 increases the expression of tumor suppressor genes p53, p21, and pRB. Functionally, KLF17 required p53 to suppress cancer cell invasion and migration in NSCLC. In conclusion, our study highlights a novel insight into the anti-EMT effect of KLF17 via a p53-dependent pathway in NSCLC, and KLF17 may be a new therapeutic target in NSCLC with p53 status.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Pulmão/patologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/genética
12.
Saudi Pharm J ; 23(5): 515-22, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26594117

RESUMO

OBJECTIVE: To determine the PPVs of selected ten medication antidote signals in recognizing potential ADRs and comparison of their sensitivity with manual chart analysis, and voluntary reporting recognizing the same ADRs. METHOD: The inpatient EMR database of internal medicine department was utilized for a period of one year, adult patients prescribed at least one of the ten signals, were included in the study, recipient patients of antidote signals were assessed for the occurrence of an ADR by Naranjo's tool of ADR evaluation. PPVs of each antidote signal were verified. RESULT: PPV of Methylprednisolone and Phytonadione was 0.28, Metoclopramide and Potassium Chloride - 0.29, Dextrose 50%, Promethazine, Sodium Polystyrene and Loperamide - 0.30, Protamine and Acetylcysteine - 0.33. In comparison of confirmed ADRs of antidote signals with other methods, Dextrose 50%, Metoclopramide, Sodium Polystyrene, Potassium Chloride, Methylprednisolone and Promethazine seem to be extremely significant (P value > 0.0001), while ADRs of Phytonadione, Protamine, Acetylcysteine and Loperamide were insignificant. CONCLUSION: Antidote medication signals have definitive discerning evaluation value of ADRs over routine methods of ADR detection with a high detection rate with a minimum cost; Their integration with hospital EMR database and routine patient safety surveillance enhances transparency, time-saving and facilitates ADR detection.

13.
BMC Complement Altern Med ; 14: 452, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25412679

RESUMO

BACKGROUND: Sonchus arvesis is traditionally reported in various human ailments including hepatotoxicity in Pakistan. Presently we designed to assess the protective effects of methanolic extract of Sonchus arvesis against carbon tetrachloride induced genotoxicity and DNA oxidative damages in hepatic tissues of experimental rats. METHODS: 36 male Sprague-Dawley rats were randomly divided into 6 groups to evaluate the hepatoprotective effects of Sonchus arvensis against CCl4 induced genotoxicity, DNA damages and antioxidant depletion. Rats of normal control group were given free access of food and water add labitum. Group II rats received 3 ml/kg of CCl4 (30% in olive oil v/v) via the intraperitoneal route twice a week for four weeks. Group III and IV received 1 ml of 100 mg/kg b.w. and 200 mg/kg b.w. SME via gavage after 48 h of CCl4 treatment whereas group V was given 1 ml of silymarin (100 mg/kg b.w.) after 48 h of CCl4 treatment. Group VI only received 200 mg/kg b.w. SME. Protective effects of SME were checked by measuring serum markers, activities of antioxidant enzymes, genotoxicity and DNA dmages. RESULTS: Results of the present study showed that treatment of SME reversed the activities of serum marker enzymes and cholesterol profile as depleted with CCl4 treatment. Activities of endogenous antioxidant enzymes of liver tissue homogenate; catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSHpx), glutathione-S-transferase (GST) and glutathione reductase (GSR) were reduced with administration of CCl4, which were returned to the control level with SME treatment. CCl4-induced hepatic cirrhosis decreased hepatic glutathione (GSH) and increased lipid peroxidative products (TBARS), were normalized by treatment with SME. Moreover, administration of CCl4 caused genotoxicity and DNA fragmentation which were significantly restored towards the normal level with SME. CONCLUSION: These results reveal that treatment of SME may be useful in the prevention of hepatic stress.


Assuntos
Antioxidantes/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Sonchus , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , DNA , Fragmentação do DNA/efeitos dos fármacos , Humanos , Fígado/enzimologia , Masculino , Paquistão , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Ratos Sprague-Dawley , Silimarina/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico
14.
Sci Rep ; 14(1): 20005, 2024 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198630

RESUMO

Impaired wound healing in diabetic individuals creates huge social and financial burdens for both diabetic patients and the health system. Unfortunately, the current treatment has not resulted in consistently lower amputation rates. Quinoxalines are heterocyclic compounds with multiple important pharmacological properties. Their effect on wound healing have not been closely studied. In the current work, the wound healing effect of 3-hydrazinylquinoxaline-2-thiol hydrogel is tested topically in a full-thickness excision wound in streptozotocin-induced type 1 diabetic rats. We examined the wound closure rate, expression of inflammatory factors, growth factors in addition to the histological analysis. The results revealed a significant acceleration in wound closure in the treated group compared with the control experimental animals. Histological data demonstrated enhanced re-epithelialization and collagen disposition. The healing effect was additionally evaluated by the inhibition of the inflammatory response of interleukin (IL)-1ß interleukin (IL)-6, tumor necrosis factor (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) with a marked improvement of the transforming growth factor beta (TGFß-1), antioxidant markers and collagen-1. In silico study indicated a favorable drug-like properties and toxicity profile. The present work showed that 3-hydrazinylquinoxaline-2-thiol holds great potential for the treatment of diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Hidrogéis , Quinoxalinas , Pele , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos , Quinoxalinas/farmacologia , Quinoxalinas/química , Hidrogéis/química , Hidrogéis/farmacologia , Masculino , Pele/efeitos dos fármacos , Pele/patologia , Pele/metabolismo , Ratos Wistar
15.
PLoS One ; 19(8): e0300079, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39163304

RESUMO

2,3-dimethylquinoxaline (DMQ) is a broad-spectrum antimicrobial phytochemical. This study aims to assess its toxicological profile. In vitro studies conducted in appropriate cell cultures, included assessment of cardiotoxicity, nephrotoxicity, and hepatotoxicity. An in vivo study was conducted in mice to determine acute oral toxicity (AOT), and subacute oral toxicity (SAOT). Acute dermal toxicity (ADT) was conducted in rats. All in-vitro toxicity studies of DMQ had negative results at concentrations ≤100 µM except for a non-significant reduction in the ATP in human hepatocellular carcinoma cell culture. The median lethal dose of DMQ was higher than 2000 mg/kg. All animals survived the scheduled necropsy and none showed any alteration in clinical signs. Biochemistry analysis revealed a significant difference between the satellite and control groups, showing an increase in platelet counts and white blood cell counts by 99.8% and 188.8%, respectively. Histology revealed enlargement of renal corpuscles; hyperplasia of testosterone-secreting cells; and dilatation of coronaries and capillaries. The present data suggests an acceptable safety profile of DMQ in rodents except for thrombocytosis, leukocytosis, and histological changes in high doses that need further investigation.


Assuntos
Anti-Infecciosos , Quinoxalinas , Animais , Camundongos , Quinoxalinas/toxicidade , Ratos , Humanos , Masculino , Anti-Infecciosos/toxicidade , Feminino , Medicina Herbária , Linhagem Celular Tumoral
16.
Discov Oncol ; 15(1): 257, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960937

RESUMO

To address the prevalent genistein (GST) metabolism and inadequate intestinal absorption, an oral long-acting and gastric in-situ gelling gel was designed to encapsulate and localize the intestinal release of the loaded genistein-ginseng (GST-GNS) solid dispersion. Because of the high breast perfusion of GST upon oral absorption, the GST-GNS solid dispersion was developed to enhance GST's dissolution and penetration while offering a synergistic impact against breast cancer (BC). Physiochemical analysis of the GST-GNS solid dispersion, release analysis, gel characterizations, storage stability, penetration, and in vitro cytotoxicity studies were carried out. GST-GNS solid dispersion showed improved dissolution and penetration as compared to raw GST. GST-GNS solid dispersion homogenous shape particles and hydrophilic contacts were revealed by scanning electron microscopy and Fourier Transform-Infrared analysis, respectively. GST-GNS solid dispersion's diffractogram shows the amorphous character. A second modification involved creating a gastric in-situ gelling system loaded with GST-GNS solid dispersion. This system demonstrated improved GST penetration employing the solid dispersion, as well as the localizing of the GST release at the intestinal media and antitumor synergism against BC. For a better therapeutic approach for BC, the innovative oral GST long-acting gel encasing the GST-GNS solid dispersion would be recommended.

17.
Gene ; 927: 148648, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852696

RESUMO

PURPOSE: To investigate the allelic and genotypic frequencies of the two genetic variations, NC_000006.12: g.160275887C > T (rs662301) and NC_000006.12:g.160231826 T > C (rs315978), in the SLC22A2 gene among the Saudi population. The primary goal is to elucidate potential associations with these genetic variations and the response to metformin therapy over 6 months to enhance our knowledge of the genetic basis of Type 2 Diabetes Mellitus (T2DM) and its clinical management in the Saudi population. MATERIALS/METHODS: 76 newly diagnosed T2DM patients, aged 30 to 60, of both sexes and Saudi origin, were treated with metformin monotherapy. Blood samples were collected before and after 6 months of therapy,80 healthy individuals were included as controls. Genomic DNA was extracted. Genotyping of the SLC22A2 genetic variations was performed using TaqMan® SNP Genotyping Assays. Binary logistic regression was utilized to evaluate how certain clinical parameters influence T2DM concerning the presence of SLC22A2 gene variants. RESULTS: Among these patients, 73.3 % were responders, and 26.7 % were non-responders. For these variants, no statistically significant differences in genotype or allele frequencies were observed between responders and non-responders (p = 0.375 and p = 0.384 for rs662301; p = 0.473 and p = 0.481 for rs315978, respectively). For the SLC22A2 variant rs662301, the C/C genotype was significantly associated with increased T2DM risk with age and elevated HbA1c levels. Similarly, rs315978 revealed higher T2DM susceptibility and HbA1c elevation in C/C genotype carriers, specifically with advancing age compared to individuals with C/T and T/T genotypes. CONCLUSION: The study offers insights into the genetic landscape of T2DM in Saudi Arabia. Despite the absence of significant associations with treatment response, the study suggests potential age-specific associations, this highlights the complexity of the disease. This research underscores the necessity for expanded research, considering diverse populations and genetic factors, to develop personalized treatment approaches. This study serves as a foundation for future investigations into the Saudi population, recognizing the need for a larger sample size.


Assuntos
Diabetes Mellitus Tipo 2 , Frequência do Gene , Hipoglicemiantes , Metformina , Transportador 2 de Cátion Orgânico , Polimorfismo de Nucleotídeo Único , Humanos , Metformina/uso terapêutico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Masculino , Feminino , Arábia Saudita , Pessoa de Meia-Idade , Adulto , Transportador 2 de Cátion Orgânico/genética , Hipoglicemiantes/uso terapêutico , Genótipo , Estudos de Casos e Controles
18.
Oncol Res ; 32(5): 817-830, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686050

RESUMO

Cancer frequently develops resistance to the majority of chemotherapy treatments. This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors, specifically Canagliflozin (CAN), Dapagliflozin (DAP), Empagliflozin (EMP), and Doxorubicin (DOX), using in vitro experimentation. The precise combination of CAN+DOX has been found to greatly enhance the cytotoxic effects of doxorubicin (DOX) in MCF-7 cells. Interestingly, it was shown that cancer cells exhibit an increased demand for glucose and ATP in order to support their growth. Notably, when these medications were combined with DOX, there was a considerable inhibition of glucose consumption, as well as reductions in intracellular ATP and lactate levels. Moreover, this effect was found to be dependent on the dosages of the drugs. In addition to effectively inhibiting the cell cycle, the combination of CAN+DOX induces substantial modifications in both cell cycle and apoptotic gene expression. This work represents the initial report on the beneficial impact of SGLT2 inhibitor medications, namely CAN, DAP, and EMP, on the responsiveness to the anticancer properties of DOX. The underlying molecular mechanisms potentially involve the suppression of the function of SGLT2.


Assuntos
Apoptose , Neoplasias da Mama , Doxorrubicina , Inibidores do Transportador 2 de Sódio-Glicose , Feminino , Humanos , Apoptose/efeitos dos fármacos , Apoptose/genética , Compostos Benzidrílicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Canagliflozina/farmacologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Glucose/metabolismo , Glucosídeos/farmacologia , Células MCF-7 , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-37123083

RESUMO

Background: Quercetin hastraditionally been used in various oxidative and urinary tract dysfunctions. Thecurrent project is consequently set to evaluate the defensive efficacy ofQuercetin against potassium bromate (KBrO3) induced testiculartissue oxidative dysfunctions through biochemical, hormonal, and genotoxicmarkers. Methods: To observe theprotective efficacy of Quercetin against urinogenital oxidative dysfunction inrats, thirty six albino male rats were divided into six groups. Protectiveefficacies of Quercetin were checked on reproductive hormonal levels,antioxidant enzyme activities, lipids peroxidation (LP), and DNA damages. Results: Potassium bromate exposure in experimentalanimals caused a reduction in the activities of antioxidant enzymes and disturbedhormonal secretions while enhancing the peroxidation of lipids andfragmentations of DNA. Cotreatment of Quercetin considerably (P<0.01)reversed these abnormalities with admiration to levels of hormones, antioxidantenzymes activities, and peroxidations of lipids secure to those seen inuntreated rats. (P < 0.01). Conclusion: The findings of the current project revealedthat various doses of Quercetin are able to keep the testicular organ fromabnormal free radical dysfunctions. These improvements might be due to theantioxidant ability of polyphenolic bioactive constituent, i.e., Quercetin.

20.
Front Pharmacol ; 14: 1188470, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324485

RESUMO

Introduction: Cerium oxide nanoparticles (CONPs) have been investigated for their therapeutic potential in Parkinson's disease (PD) due to their potent and regenerative antioxidant activity. In the present study, CONPs were used to ameliorate the oxidative stress caused by free radicals in haloperidol-induced PD in rats following intranasal administration. Method: The antioxidant potential of the CONPs was evaluated in vitro using ferric reducing antioxidant power (FRAP) assay. The penetration and local toxicity of the CONPs was evaluated ex-vivo using goat nasal mucosa. The acute local toxicity of intranasal CONPs was also studied in rat. Gamma scintigraphy was used to assess the targeted brain delivery of CONPs. Acute toxicity studies were performed in rats to demonstrate safety of intranasal CONPs. Further, open field test, pole test, biochemical estimations and brain histopathology was performed to evaluate efficacy of intranasal CONPs in haloperidol-induced PD rat model. Results: The FRAP assay revealed highest antioxidant activity of prepared CONPs at a concentration of 25 µg/mL. Confocal microscopy showed deep and homogenous distribution of CONPs in the goat nasal mucus layers. No signs of irritation or injury were seen in goat nasal membrane when treated with optimized CONPs. Scintigraphy studies in rats showed targeted brain delivery of intranasal CONPs and acute toxicity study demonstrated safety. The results of open field and pole test showed highly significant (p < 0.001) improvement in locomotor activity of rats treated with intranasal CONPs compared to untreated rats. Further, brain histopathology of treatment group rats showed reduced neurodegeneration with presence of more live cells. The amount of thiobarbituric acid reactive substances (TBARS) was reduced significantly, whereas the levels of catalase (CAT), superoxide dismutase (SOD), and GSH were increased significantly, while amounts of interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) showed significant reduction after intranasal administration of CONPs. Also, the intranasal CONPs, significantly high (p < 0.001) dopamine concentration (13.93 ± 0.85 ng/mg protein) as compared to haloperidol-induced control rats (5.76 ± 0.70 ng/mg protein). Conclusion: The overall results concluded that the intranasal CONPs could be safe and effective therapeutics for the management of PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA