Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 158(15)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37094001

RESUMO

We develop an improved stochastic formalism for the Bethe-Salpeter equation (BSE), based on an exact separation of the effective-interaction W into two parts, W = (W - vW) + vW, where the latter is formally any translationally invariant interaction, vW(r - r'). When optimizing the fit of the exchange kernel vW to W, using a stochastic sampling W, the difference W - vW becomes quite small. Then, in the main BSE routine, this small difference is stochastically sampled. The number of stochastic samples needed for an accurate spectrum is then largely independent of system size. While the method is formally cubic in scaling, the scaling prefactor is small due to the constant number of stochastic orbitals needed for sampling W.

2.
J Chem Theory Comput ; 20(10): 4196-4204, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38713513

RESUMO

We extend our recently developed sparse-stochastic fragmented exchange formalism for ground-state near-gap hybrid DFT to calculate absorption spectra within linear-response time-dependent generalized Kohn-Sham DFT (LR-GKS-TDDFT) for systems consisting of thousands of valence electrons within a grid-based/plane-wave representation. A mixed deterministic/fragmented-stochastic compression of the exchange kernel, here using long-range explicit exchange functionals, provides an efficient method for accurate optical spectra. Both real-time propagation as well as frequency-resolved Casida-equation-type approaches for spectra are presented, and the method is applied to large molecular dyes.

3.
J Chem Theory Comput ; 19(24): 9239-9247, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38051791

RESUMO

We develop an efficient approach to evaluate range-separated exact exchange for grid- or plane-wave-based representations within the generalized Kohn-Sham-density functional theory (GKS-DFT) framework. The Coulomb kernel is fragmented in reciprocal space, and we employ a mixed deterministic-stochastic representation, retaining long-wavelength (low-k) contributions deterministically and using a sparse ("fragmented") stochastic basis for the high-k part. Coupled with a projection of the Hamiltonian onto a subspace of valence and conduction states from a prior local-DFT calculation, this method allows for the calculation of the long-range exchange of large molecular systems with hundreds and potentially thousands of coupled valence states delocalized over millions of grid points. We find that even a small number of valence and conduction states is sufficient for converging the HOMO and LUMO energies of the GKS-DFT. Excellent tuning of long-range separated hybrids (RSH) is easily obtained in the method for very large systems, as exemplified here for the chlorophyll hexamer of Photosystem II with 1320 electrons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA