Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Am J Respir Cell Mol Biol ; 48(5): 665-73, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23371060

RESUMO

Adenosine concentrations are elevated in the lungs of patients with asthma and chronic obstructive pulmonary disease, where it balances between tissue repair and excessive airway remodeling. We previously demonstrated that the activation of the adenosine A2A receptor promotes epithelial wound closure. However, the mechanism by which adenosine-mediated wound healing occurs after cigarette smoke exposure has not been investigated. The present study investigates whether cigarette smoke exposure alters adenosine-mediated reparative properties via its ability to induce a shift in the oxidant/antioxidant balance. Using an in vitro wounding model, bronchial epithelial cells were exposed to 5% cigarette smoke extract, were wounded, and were then stimulated with either 10 µM adenosine or the specific A2A receptor agonist, 5'-(N-cyclopropyl)-carboxamido-adenosine (CPCA; 10 µM), and assessed for wound closure. In a subset of experiments, bronchial epithelial cells were infected with adenovirus vectors encoding human superoxide dismutase and/or catalase or control vector. In the presence of 5% smoke extract, significant delay was evident in both adenosine-mediated and CPCA-mediated wound closure. However, cells pretreated with N-acetylcysteine (NAC), a nonspecific antioxidant, reversed smoke extract-mediated inhibition. We found that cells overexpressing mitochondrial catalase repealed the smoke extract inhibition of CPCA-stimulated wound closure, whereas superoxide dismutase overexpression exerted no effect. Kinase experiments revealed that smoke extract significantly reduced the A2A-mediated activation of cyclic adenosine monophosphate-dependent protein kinase. However, pretreatment with NAC reversed this effect. In conclusion, our data suggest that cigarette smoke exposure impairs A2A-stimulated wound repair via a reactive oxygen species-dependent mechanism, thereby providing a better understanding of adenosine signaling that may direct the development of pharmacological tools for the treatment of chronic inflammatory lung disorders.


Assuntos
Adenosina/fisiologia , Células Epiteliais/metabolismo , Peróxido de Hidrogênio/metabolismo , Fumaça , Cicatrização , Acetilcisteína/farmacologia , Adenosina/metabolismo , Animais , Brônquios/patologia , Catalase/fisiologia , Bovinos , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Células Epiteliais/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Cultura Primária de Células , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Sistemas do Segundo Mensageiro , Nicotiana/química
2.
Am J Physiol Cell Physiol ; 305(2): C182-9, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23636457

RESUMO

Inspiration of a high concentration of oxygen, a therapy for acute lung injury (ALI), could unexpectedly lead to reactive oxygen species (ROS) production and hyperoxia-induced acute lung injury (HALI). Nucleotide-binding domain and leucine-rich repeat PYD-containing protein 3 (NLRP3) senses the ROS, triggering inflammasome activation and interleukin-1ß (IL-1ß) production and secretion. However, the role of NLRP3 inflammasome in HALI is unclear. The main aim of this study is to determine the effect of NLRP3 gene deletion on inflammatory response and lung epithelial cell death. Wild-type (WT) and NLRP3(-/-) mice were exposed to 100% O2 for 48-72 h. Bronchoalveolar lavage fluid and lung tissues were examined for proinflammatory cytokine production and lung inflammation. Hyperoxia-induced lung pathological score was suppressed in NLRP3(-/-) mice compared with WT mice. Hyperoxia-induced recruitment of inflammatory cells and elevation of IL-1ß, TNFα, macrophage inflammatory protein-2, and monocyte chemoattractant protein-1 were attenuated in NLRP3(-/-) mice. NLRP3 deletion decreased lung epithelial cell death and caspase-3 levels and a suppressed NF-κB levels compared with WT controls. Taken together, this research demonstrates for the first time that NLRP3-deficient mice have suppressed inflammatory response and blunted lung epithelial cell apoptosis to HALI.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/prevenção & controle , Proteínas de Transporte/metabolismo , Hiperóxia/complicações , Oxigênio/efeitos adversos , Lesão Pulmonar Aguda/genética , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Proteínas de Transporte/genética , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Fragmentação do DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Predisposição Genética para Doença , Hiperóxia/metabolismo , Inflamassomos/efeitos adversos , Inflamassomos/metabolismo , Interleucina-1beta/análise , Interleucina-6/análise , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Oxigênio/administração & dosagem , Oxigênio/uso terapêutico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
3.
Am J Pathol ; 181(2): 431-40, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22677421

RESUMO

Alcohol use disorders are associated with increased lung infections and exacerbations of chronic lung diseases. Whereas the effects of cigarette smoke are well recognized, the interplay of smoke and alcohol in modulating lung diseases is not clear. Because innate lung defense is mechanically maintained by airway cilia action and protein kinase C (PKC)-activating agents slow ciliary beat frequency (CBF), we hypothesized that the combination of smoke and alcohol would decrease CBF in a PKC-dependent manner. Primary ciliated bronchial epithelial cells were exposed to 5% cigarette smoke extract plus100 mmol/L ethanol for up to 24 hours and assayed for CBF and PKCε. Smoke and alcohol co-exposure activated PKCε by 1 hour and decreased both CBF and total number of beating cilia by 6 hours. A specific activator of PKCε, DCP-LA, slowed CBF after maximal PKCε activation. Interestingly, activation of PKCε by smoke and alcohol was only observed in ciliated cells, not basal bronchial epithelium. In precision-cut mouse lung slices treated with smoke and alcohol, PKCε activation preceded CBF slowing. Correspondingly, increased PKCε activity and cilia slowing were only observed in mice co-exposed to smoke and alcohol, regardless of the sequence of the combination exposure. No decreases in CBF were observed in PKCε knockout mice co-exposed to smoke and alcohol. These data identify PKCε as a key regulator of cilia slowing in response to combined smoke and alcohol-induced lung injury.


Assuntos
Brônquios/patologia , Cílios/metabolismo , Exposição Ambiental , Células Epiteliais/enzimologia , Etanol/efeitos adversos , Proteína Quinase C-épsilon/metabolismo , Fumar/efeitos adversos , Animais , Axonema/enzimologia , Biocatálise , Bovinos , Ativação Enzimática , Células Epiteliais/patologia , Técnicas In Vitro , Camundongos , Camundongos Knockout , Transporte Proteico
4.
Inflamm Res ; 61(3): 233-44, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22138711

RESUMO

OBJECTIVE AND DESIGN: This study is designed to investigate the role of p38 MAPK in modulating human pulmonary artery endothelial cells (HPAECs) survival and tissue repair functions. METHODS: HPAECs (passage 8-12) were used for all experiments. Cells were treated with IL-1ß (0.5 or 2 ng/ml) or p38 inhibitor (SB203580 or SB220025, 5 µM each). Cells were also transfected with 50 nM siRNAs. Cell length was measured using ImageJ software. Collagen gel contraction and wound close assay were performed to evaluate tissue repair functions. RESULTS: IL-1ß activated p38 MAPK and induced morphologic change of HPAECs. The p38 inhibitors further augmented IL-1ß-induced cell morphologic change, prevented cell death, and augmented collagen gel contraction. Suppression of p38α, γ, or δ, but not p38ß resulted in cell morphologic alteration, and suppressing any one of p38 isoforms by siRNAs increased cell survival. Suppression of p38α or δ augmented gel contraction. While p38α suppression stimulated cell migration, suppressing the rest of three isoforms inhibit cell migration. Nuclear factor p65-siRNA blocked IL-1ß-induced cell morphologic change, but did not affect p38 inhibitor-induced change. CONCLUSION: These findings suggest that p38 MAPK may negatively modulate tissue repair functions of endothelial cells via p65 independent pathway.


Assuntos
Células Endoteliais/imunologia , Interleucina-1beta/farmacologia , Fator de Transcrição RelA/imunologia , Cicatrização , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Humanos , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Artéria Pulmonar/citologia , Piridinas/farmacologia , Pirimidinas/farmacologia , RNA Interferente Pequeno/genética , Proteínas Recombinantes/farmacologia , Cicatrização/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética
5.
Am J Physiol Lung Cell Mol Physiol ; 301(2): L171-80, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21622845

RESUMO

Mucociliary clearance, vital to lung clearance, is dependent on cilia beat frequency (CBF), coordination of cilia, and the maintenance of periciliary fluid. Adenosine, the metabolic breakdown product of ATP, is an important modulator of ciliary motility. However, the contributions of specific adenosine receptors to key airway ciliary motility processes are unclear. We hypothesized that adenosine modulates ciliary motility via activation of its cell surface receptors (A(1), A(2A), A(2B), or A(3)). To test this hypothesis, mouse tracheal rings (MTRs) excised from wild-type and adenosine receptor knockout mice (A(1), A(2A), A(2B), or A(3), respectively), and bovine ciliated bronchial epithelial cells (BBECs) were stimulated with known cilia activators, isoproterenol (ISO; 10 µM) and/or procaterol (10 µM), in the presence or absence of 5'-(N-ethylcarboxamido) adenosine (NECA), a nonselective adenosine receptor agonist [100 nM (A(1), A(2A), A(3)); 10 µM (A(2B))], and CBF was measured. Cells and MTRs were also stimulated with NECA (100 nM or 10 µM) in the presence and absence of adenosine deaminase inhibitor, erythro-9- (2-hydroxy-3-nonyl) adenine hydrochloride (10 µM). Both ISO and procaterol stimulated CBF in untreated cells and/or MTRs from both wild-type and adenosine knockout mice by ~3 Hz. Likewise, CBF significantly increased ~2-3 Hz in BBECs and wild-type MTRs stimulated with NECA. MTRs from A(1), A(2A), and A(3) knockout mice stimulated with NECA also demonstrated an increase in CBF. However, NECA failed to stimulate CBF in MTRs from A(2B) knockout mice. To confirm the mechanism by which adenosine modulates CBF, protein kinase activity assays were conducted. The data revealed that NECA-stimulated CBF is mediated by the activation of cAMP-dependent PKA. Collectively, these data indicate that purinergic stimulation of CBF requires A(2B) adenosine receptor activation, likely via a PKA-dependent pathway.


Assuntos
Adenosina/metabolismo , Brônquios/citologia , Cílios/fisiologia , Purinérgicos/farmacologia , Receptores Purinérgicos P1/metabolismo , Traqueia/citologia , Adenina/análogos & derivados , Adenina/farmacologia , Adenosina/deficiência , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Animais , Bovinos , Cílios/efeitos dos fármacos , Células Epiteliais/fisiologia , Feminino , Técnicas In Vitro , Isoproterenol/farmacologia , Camundongos , Camundongos Knockout , Movimento/efeitos dos fármacos , Procaterol/farmacologia , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/metabolismo , Receptores Purinérgicos P1/deficiência
6.
Front Physiol ; 12: 614330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584346

RESUMO

Adenosine (ADO) involvement in lung injury depends on the activation of its receptors. The ADO A2A receptor (ADORA2A) and A2B receptor (ADORA2B) are best described to have both tissue-protective and tissue-destructive processes. However, no approach has been effective in delineating the mechanism(s) involved with ADO shifting from its tissue-protective to tissue-destructive properties in chronic airway injury. Using cigarette smoke (CS) as our model of injury, we chronically exposed Nuli-1 cells to 5% CS extract (CSE) for 3 years establishing a long-term CSE exposure model (LTC). We found significant morphological changes, decreased proliferation, and migration resulting in impaired airway wound closure in LTC. Further investigations showed that long-term CSE exposure upregulates CD73 and ADORA2B expression, increases ADO production, inhibits PKC alpha activity and p-ERK signaling pathway. Knocking down ADORA2B and/or CD73 in LTC activates PKC alpha and increases p-ERK signaling. Knocking down both showed better improvement in wound repair than either alone. In vivo experiments also showed that double knockout CD73 and ADORA2B remarkably improved CS-induced lung injury by activating PKC alpha, reducing the inflammatory cell number in bronchoalveolar lavage fluid and the production of inflammatory mediator IL-6, inhibiting the fibrosis-like lesions and decreasing collagen deposition surrounding bronchioles. Collectively, long-term CSE exposure upregulates CD73 expression and increases ADO production, which promotes low affinity ADORA2B activation and subsequent diminution of PKC alpha activity and ERK signaling pathway, and inhibition of airway wound repair. Moreover, the data suggesting ADORA2B and CD73 as potential therapeutic targets may be more efficacious in improving chronic CS lung diseases and impaired wound repair.

7.
Front Physiol ; 11: 588553, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362576

RESUMO

BACKGROUND: The recent emergence and rapid global spread of coronavirus disease 2019 (COVID-19) is leading to public health crises worldwide. Alcohol consumption and cigarette smoking (CS) are two known risk factors in many diseases including respiratory infections. METHODS: We performed a multi-center study in the four largest hospitals designated for COVID-19 patients in Wuhan. There are totally 1547 patients diagnosed with COVID-19 enrolled in the study, alcohol consumption and CS history were evaluated among these patients. The epidemiology, laboratory findings and outcomes of patients contracted COVID-19 were further studied. RESULTS: Our findings indicated that COVID-19 patients with a history of CS tend to have more severe outcomes than non-smoking patients. However, alcohol consumption did not reveal significant effects on neither development of severe illness nor death rates in COVID-19 patients. CONCLUSION: CS is a risk factor for developing severe illness and increasing mortality during the SARS-CoV-2 infection. We believe that our findings will provide a better understanding on the effects of alcohol intake and CS exposure in COVID-19 patients.

8.
Alcohol Clin Exp Res ; 33(5): 791-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19298329

RESUMO

BACKGROUND: Adenosine uptake into cells by nucleoside transporters plays a significant role in governing extracellular adenosine concentration. Extracellular adenosine is an important signaling molecule that modulates many cellular functions via 4 G-protein-coupled receptor subtypes (A(1), A(2A), A(2B), and A(3)). Previously, we demonstrated that adenosine is critical in maintaining airway homeostasis and airway repair and that airway host defenses are impaired by alcohol. Taken together, we hypothesized that ethanol impairs adenosine uptake via the nucleoside transport system. METHODS: To examine ethanol-induced alteration on adenosine transport, we used a human bronchial epithelial cell line (BEAS-2B). Cells were preincubated for 10 minutes in the presence and absence of varying concentrations of ethanol (EtOH). In addition, some cells were pretreated with S-(4-Nitrobenzyl)-6-thioinosine (100 microM: NBT), a potent adenosine uptake inhibitor. Uptake was then determined by addition of [(3)H]-adenosine at various time intervals. RESULTS: Increasing EtOH concentrations resulted in increasing inhibition of adenosine uptake when measured at 1 minute. Cells pretreated with NBT effectively blocked adenosine uptake. In addition, short-term EtOH revealed increased extracellular adenosine concentration. Conversely, adenosine transport became desensitized in cells exposed to EtOH (100 mM) for 24 hours. To determine the mechanism of EtOH-induced desensitization of adenosine transport, cAMP activity was assessed in response to EtOH. Short-term EtOH exposure (10 minutes) had little or no effect on adenosine-mediated cAMP activation, whereas long-term EtOH exposure (24 hours) blocked adenosine-mediated cAMP activation. Western blot analysis of lysates from unstimulated BEAS-2B cells detected a single 55 kDa band indicating the presence of hENT1 and hENT2, respectively. Real-time RT-PCR of RNA from BEAS-2B revealed transcriptional expression of ENT1 and ENT2. CONCLUSIONS: Collectively, these data reveal that acute exposure of cells to EtOH inhibits adenosine uptake via a nucleoside transporter, and chronic exposure of cells to EtOH desensitizes the adenosine transporter to these inhibitory effects of ethanol. Furthermore, our data suggest that inhibition of adenosine uptake by EtOH leads to an increased extracellular adenosine accumulation, influencing the effect of adenosine at the epithelial cell surface, which may alter airway homeostasis.


Assuntos
Adenosina/antagonistas & inibidores , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Transportador Equilibrativo 2 de Nucleosídeo/antagonistas & inibidores , Etanol/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Adenosina/metabolismo , Linhagem Celular Transformada , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Humanos
9.
J Investig Med ; 55(7): 378-85, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18062899

RESUMO

Migration of neighboring cells into the injury is important for rapid repair of damaged airway epithelium. We previously reported that activation of the A(2A )receptors (A(2A)ARs) mediates adenosine-stimulated epithelial wound healing, suggesting a role for adenosine in migration. Because A(2A)AR increases cyclic adenosine monophosphate (cAMP) levels in many cells, we hypothesized that cAMP-dependent protein kinase A (PKA) is involved in adenosine-mediated cellular migration. To test this hypothesis, we stimulated a human bronchial epithelial cell line with adenosine and/or A(2A)AR agonist (5'-(N-cyclopropyl)-carboxamido-adenosine [CPCA]) in the presence or absence of adenosine deaminase inhibitor (erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride [EHNA]). Cells treated with adenosine or CPCA demonstrated a concentration-dependent increase in migration. Similar results were observed in the presence and absence of EHNA. To confirm A(2A) involvement, we pretreated the cells for 1 hour with the A(2A) receptor antagonist ZM241385 and then stimulated them with either adenosine or CPCA. To elucidate PKA's role, cells were pretreated for 1 hour with either a PKA inhibitor (KT5720) or a cAMP antagonist analogue (Rp-cAMPS) and then stimulated with adenosine and/or CPCA. Pretreatment with KT5720 or Rp-cAMPS resulted in a significant decrease in adenosine-mediated cellular migration. PKA activity confirmed that bronchial epithelial migration requires cAMP and PKA activity. When cells were wounded and stimulated with CPCA, an increase in PKA activity occurred. Pretreatment for 1 hour with either KT5720 or Rp-cAMPS resulted in a significant decrease in adenosine-mediated PKA activation. These data suggest that adenosine activation of A(2A)AR augments epithelial repair by increasing airway cellular migration by PKA-dependent mechanisms.


Assuntos
Adenosina/farmacologia , Brônquios/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Brônquios/citologia , Técnicas de Cultura de Células , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Humanos , Receptor A2A de Adenosina/efeitos dos fármacos
10.
Sci Rep ; 7: 44405, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28337995

RESUMO

Cigarette smoke (CS) exposure and intrinsic factors such as the NADPH oxidases produce high levels of reactive oxygen species (ROS), ensuing inflammatory tissue injury. We previously demonstrated that CS-generated ROS, particularly hydrogen peroxide (H2O2), impaired adenosine stimulated wound repair. We hypothesized that CS exposure modulates expression of Dual oxidase 1 (Duox-1), a NADPH oxidases known to generate H2O2. To test this hypothesis, we used human bronchial epithelial cell line Nuli-1 and C57BL/6 mice. Cells were treated with 5% CS extract (CSE) for various periods of time, and mice were exposed to whole body CS for six weeks. Both CSE and CS treatment induced increased expression of Duox-1, and silencing of Doux-1 improved the rate of cell wound repair induced by CSE treatment. Nuli-1 cells pretreated with thapsigargin but not calcium ionophore exhibited increased Duox-1 mRNA expression. CSE treatment stimulated PKCα activation, which was effectively blocked by pretreatment with diphenylene iodonium, a NADPH oxidase inhibitor. Compared to control, lungs from CS-exposed mice showed a significant increase in PKCα activity and Duox-1 expression. Collectively, the data demonstrated that CS exposure upregulates expression of Duox-1 protein. This further leads to H2O2 production and PKCα activation, inhibiting A2AAR-stimulated wound repair.


Assuntos
Misturas Complexas/farmacologia , Oxidases Duais/genética , Células Epiteliais/efeitos dos fármacos , Nicotiana/química , Receptor A2A de Adenosina/genética , Animais , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Ionóforos de Cálcio/farmacologia , Linhagem Celular , Oxidases Duais/metabolismo , Inibidores Enzimáticos/farmacologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oniocompostos/farmacologia , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais , Fumar/fisiopatologia , Tapsigargina/farmacologia , Nicotiana/toxicidade , Cicatrização/efeitos dos fármacos
11.
Am J Physiol Lung Cell Mol Physiol ; 293(6): L1469-74, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17934063

RESUMO

Agricultural work and other occupational exposures are responsible for approximately 15% of chronic obstructive pulmonary disease (COPD). COPD involves airway remodeling in response to chronic lung inflammatory events and altered airway repair mechanisms. However, the effect of agricultural dust exposure on signaling pathways that regulate airway injury and repair has not been well characterized. A key step in this process is migration of airway cells to restore epithelial integrity. We have previously shown that agents that activate the critical regulatory enzyme protein kinase C (PKC) slow cell migration during wound repair. Based on this observation and direct kinase measurements that demonstrate that dust extract from hog confinement barns (HDE) specifically activates the PKC isoforms PKCalpha and PKCepsilon, we hypothesized that HDE would slow wound closure time in airway epithelial cells. We utilized the human bronchial epithelial cell line BEAS-2B and transfected BEAS-2B cell lines that express dominant negative (DN) forms of PKC isoforms to demonstrate that HDE slows wound closure in BEAS-2B and PKCepsilon DN cell lines. However, in PKCalpha DN cells, wound closure following HDE treatment is not significantly different than media-treated cells. These results suggest that the PKCalpha isoform is an important regulator of cell migration in response to agricultural dust exposure.


Assuntos
Brônquios/citologia , Brônquios/enzimologia , Movimento Celular , Poeira , Células Epiteliais/citologia , Células Epiteliais/enzimologia , Proteína Quinase C-alfa/metabolismo , Linhagem Celular , Ativação Enzimática , Genes Dominantes , Humanos , Isoenzimas/metabolismo , Proteína Quinase C-épsilon/metabolismo , Transfecção , Cicatrização
12.
J Pharmacol Exp Ther ; 314(1): 476-82, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15843499

RESUMO

We have shown that exposing human bronchial epithelial cells (HBECs) to 5% cigarette smoke extract (CSE) up-regulates C5a anaphylatoxin receptor (C5aR) expression as determined by flow cytometric analysis and immunohistochemistry. In this study, we conducted whole-cell saturation studies to quantitate the receptor number. After exposing an HBEC line (BEAS-2B) to CSE, radiolabeled C5a bound saturably with Kd = 2.71 +/- 1.03 nM (n = 4) and Bmax = 15,044 +/- 5702 receptors/cells. Without 5% CSE, no C5a binding was detected. Competitive binding studies revealed two classes of sites with distinct affinities for C5a (Ki1 = 3.28 x 10(-16) M; Ki2 = 1.60 x 10(-9) M). BEAS-2Bs were transfected with wild-type (WT) or mutant dominant-negative (DN) protein kinase C-alpha (PKC-alpha) to investigate the relationship between PKC-alpha and C5aR availability and affinity. Western blot analysis revealed a 75-kDa lysate band from cells expressing WT and DN PKC-alpha, but DN cells exposed to 5% CSE had no functional PKC activity. Pretreatment with Gö6976 [12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo(3,4-c)-carbazole] (PKC-alpha inhibitor) had no effect on DN but significantly decreased WT PKC activity. Competitive binding studies conducted on either WT or DN PKC-alpha-transfected cells also revealed two classes of binding sites for C5a having different affinities. There was a significant rightward shift of the binding curve when WT cells were pretreated with Gö6976. These data suggest that C5aR is detectable on bronchial epithelial cells exposed to CSE and that exposure to CSE increases the availability of C5a binding sites. The data also indicate that PKC-alpha may play an important role in modulating C5aR binding.


Assuntos
Brônquios/metabolismo , Células Epiteliais/metabolismo , Nicotiana , Receptor da Anafilatoxina C5a/biossíntese , Fumaça/análise , Ligação Competitiva/efeitos dos fármacos , Western Blotting , Brônquios/efeitos dos fármacos , Carbazóis/farmacologia , Complemento C5a/metabolismo , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Humanos , Indóis/farmacologia , Radioisótopos do Iodo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteína Quinase C-alfa , Ensaio Radioligante , Receptor da Anafilatoxina C5a/genética , Proteínas Recombinantes/efeitos dos fármacos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA