Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Small ; 19(6): e2205487, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36470595

RESUMO

Metal boride nanostructures have shown significant promise for hydrogen storage applications. However, the synthesis of nanoscale metal boride particles is challenging because of their high surface energy, strong inter- and intraplanar bonding, and difficult-to-control surface termination. Here, it is demonstrated that mechanochemical exfoliation of magnesium diboride in zirconia produces 3-4 nm ultrathin MgB2 nanosheets (multilayers) in high yield. High-pressure hydrogenation of these multilayers at 70 MPa and 330 °C followed by dehydrogenation at 390 °C reveals a hydrogen capacity of 5.1 wt%, which is ≈50 times larger than the capacity of bulk MgB2 under the same conditions. This enhancement is attributed to the creation of defective sites by ball-milling and incomplete Mg surface coverage in MgB2 multilayers, which disrupts the stable boron-boron ring structure. The density functional theory calculations indicate that the balance of Mg on the MgB2 nanosheet surface changes as the material hydrogenates, as it is energetically favorable to trade a small number of Mg vacancies in Mg(BH4 )2 for greater Mg coverage on the MgB2 surface. The exfoliation and creation of ultrathin layers is a promising new direction for 2D metal boride/borohydride research with the potential to achieve high-capacity reversible hydrogen storage at more moderate pressures and temperatures.

2.
Phys Chem Chem Phys ; 25(40): 27065-27074, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37792449

RESUMO

Organic co-crystals have emerged as a promising class of semiconductors for next-generation optoelectronic devices due to their unique photophysical properties. This paper presents a joint experimental-theoretical study comparing the crystal structure, spectroscopy, and electronic structure of two charge transfer co-crystals. Reported herein is a novel co-crystal Npe:TCNQ, formed from 4-(1-naphthylvinyl)pyridine (Npe) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) via molecular self-assembly. This work also presents a revised study of the co-crystal composed of Npe and 1,2,4,5-tetracyanobenzene (TCNB) molecules, Npe:TCNB, herein reported with a higher-symmetry (monoclinic) crystal structure than previously published. Npe:TCNB and Npe:TCNQ dimer clusters are used as theoretical model systems for the co-crystals; the geometries of the dimers are compared to geometries of the extended solids, which are computed with periodic boundary conditions density functional theory. UV-Vis absorption spectra of the dimers are computed with time-dependent density functional theory and compared to experimental UV-Vis diffuse reflectance spectra. Both Npe:TCNB and Npe:TCNQ are found to exhibit neutral character in the S0 state and ionic character in the S1 state. The high degree of charge transfer in the S1 state of both Npe:TCNB and Npe:TCNQ is rationalized by analyzing the changes in orbital localization associated with the S1 transitions.

3.
J Am Chem Soc ; 144(30): 13729-13739, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35876689

RESUMO

We are currently witnessing the dawn of hydrogen (H2) economy, where H2 will soon become a primary fuel for heating, transportation, and long-distance and long-term energy storage. Among diverse possibilities, H2 can be stored as a pressurized gas, a cryogenic liquid, or a solid fuel via adsorption onto porous materials. Metal-organic frameworks (MOFs) have emerged as adsorbent materials with the highest theoretical H2 storage densities on both a volumetric and gravimetric basis. However, a critical bottleneck for the use of H2 as a transportation fuel has been the lack of densification methods capable of shaping MOFs into practical formulations while maintaining their adsorptive performance. Here, we report a high-throughput screening and deep analysis of a database of MOFs to find optimal materials, followed by the synthesis, characterization, and performance evaluation of an optimal monolithic MOF (monoMOF) for H2 storage. After densification, this monoMOF stores 46 g L-1 H2 at 50 bar and 77 K and delivers 41 and 42 g L-1 H2 at operating pressures of 25 and 50 bar, respectively, when deployed in a combined temperature-pressure (25-50 bar/77 K → 5 bar/160 K) swing gas delivery system. This performance represents up to an 80% reduction in the operating pressure requirements for delivering H2 gas when compared with benchmark materials and an 83% reduction compared to compressed H2 gas. Our findings represent a substantial step forward in the application of high-density materials for volumetric H2 storage applications.

4.
Chem Rev ; 120(16): 8581-8640, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32692163

RESUMO

Open framework materials (OFM) constitute a large and growing class of nanoporous crystalline structures that is attracting considerable attention for electronic device applications. This review summarizes the most recent reports concerning electronic devices enabled by either of the two primary categories of OFM, metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). Devices in which the OFM plays an active role (as opposed to acting only as a selective sorbent or filter) are the principal focus, with examples cited that include field-effect transistors, capacitors, memristors, and a wide variety of sensing architectures. As a brief tutorial, we also provide a concise summary of various methods of depositing or growing OFM on surfaces, as these are of crucial importance to the deployment of electronic OFM. Finally, we offer our perspective concerning future research directions, particularly regarding what in our view are the biggest challenges remaining to be addressed. On the basis of the literature discussed here, we conclude that OFM constitute a unique class of electronic materials with characteristics and advantages that are distinct from either conventional inorganic semiconductors or organic conductors. This suggests a bright future for these materials in applications such as edge computing, resistive switching, and mechanically flexible sensing and electronics.

5.
J Am Chem Soc ; 143(18): 6705-6723, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33904302

RESUMO

The rational design principles established for metal-organic frameworks (MOFs) allow clear structure-property relationships, fueling expansive growth for energy storage and conversion, catalysis, and beyond. However, these design principles are based on the assumption of compositional and structural rigidity, as measured crystallographically. Such idealization of MOF structures overlooks subtle chemical aspects that can lead to departures from structure-based chemical intuition. In this Perspective, we identify unexpected behavior of MOFs through literature examples. Based on this analysis, we conclude that departures from ideality are not uncommon. Whereas linker topology and metal coordination geometry are useful starting points for understanding MOF properties, we anticipate that deviations from the idealized crystal representation will be necessary to explain important and unexpected behaviors. Although this realization reinforces the notion that MOFs are highly complex materials, it should also stimulate a broader reexamination of the literature to identify corollaries to existing design rules and reveal new structure-property relationships.

6.
Angew Chem Int Ed Engl ; 60(49): 25815-25824, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459093

RESUMO

The highly unfavorable thermodynamics of direct aluminum hydrogenation can be overcome by stabilizing alane within a nanoporous bipyridine-functionalized covalent triazine framework (AlH3 @CTF-bipyridine). This material and the counterpart AlH3 @CTF-biphenyl rapidly desorb H2 between 95 and 154 °C, with desorption complete at 250 °C. Sieverts measurements, 27 Al MAS NMR and 27 Al{1 H} REDOR experiments, and computational spectroscopy reveal that AlH3 @CTF-bipyridine dehydrogenation is reversible at 60 °C under 700 bar hydrogen, >10 times lower pressure than that required to hydrogenate bulk aluminum. DFT calculations and EPR measurements support an unconventional mechanism whereby strong AlH3 binding to bipyridine results in single-electron transfer to form AlH2 (AlH3 )n clusters. The resulting size-dependent charge redistribution alters the dehydrogenation/rehydrogenation thermochemistry, suggesting a novel strategy to enable reversibility in high-capacity metal hydrides.

7.
Chem Rev ; 118(22): 10775-10839, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30277071

RESUMO

Knowledge and foundational understanding of phenomena associated with the behavior of materials at the nanoscale is one of the key scientific challenges toward a sustainable energy future. Size reduction from bulk to the nanoscale leads to a variety of exciting and anomalous phenomena due to enhanced surface-to-volume ratio, reduced transport length, and tunable nanointerfaces. Nanostructured metal hydrides are an important class of materials with significant potential for energy storage applications. Hydrogen storage in nanoscale metal hydrides has been recognized as a potentially transformative technology, and the field is now growing steadily due to the ability to tune the material properties more independently and drastically compared to those of their bulk counterparts. The numerous advantages of nanostructured metal hydrides compared to bulk include improved reversibility, altered heats of hydrogen absorption/desorption, nanointerfacial reaction pathways with faster rates, and new surface states capable of activating chemical bonds. This review aims to summarize the progress to date in the area of nanostructured metal hydrides and intends to understand and explain the underpinnings of the innovative concepts and strategies developed over the past decade to tune the thermodynamics and kinetics of hydrogen storage reactions. These recent achievements have the potential to propel further the prospects of tuning the hydride properties at nanoscale, with several promising directions and strategies that could lead to the next generation of solid-state materials for hydrogen storage applications.

8.
J Am Chem Soc ; 141(45): 17995-17999, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31647653

RESUMO

Hydrogen is regarded as an attractive alternative energy carrier due to its high gravimetric energy density and only water production upon combustion. However, due to its low volumetric energy density, there are still some challenges in practical hydrogen storage and transportation. In the past decade, using chemical bonds of liquid organic molecules as hydrogen carriers to generate hydrogen in situ provided a feasible method to potentially solve this problem. Research efforts on liquid organic hydrogen carriers (LOHCs) seek practical carrier systems and advanced catalytic materials that have the potential to reduce costs, increase reaction rate, and provide a more efficient catalytic hydrogen generation/storage process. In this work, we used methanol as a hydrogen carrier to release hydrogen in situ with the single-site Pt1/CeO2 catalyst. Moreover, in this reaction, compared with traditional nanoparticle catalysts, the single site catalyst displays excellent hydrogen generation efficiency, 40 times higher than 2.5 nm Pt/CeO2 sample, and 800 times higher compared to 7.0 nm Pt/CeO2 sample. This in-depth study highlights the benefits of single-site catalysts and paves the way for further rational design of highly efficient catalysts for sustainable energy storage applications.

9.
Chemphyschem ; 20(10): 1340-1347, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30887700

RESUMO

Complex light metal hydrides are promising candidates for efficient, compact solid-state hydrogen storage. (De)hydrogenation of these materials often proceeds via multiple reaction intermediates, the energetics of which determine reversibility and kinetics. At the solid-state reaction front, molecular-level chemistry eventually drives the formation of bulk product phases. Therefore, a better understanding of realistic (de)hydrogenation behavior requires considering possible reaction products along all stages of morphological evolution, from molecular to bulk crystalline. Here, we use first-principles calculations to explore the interplay between intermediate morphology and reaction pathways. Employing representative complex metal hydride systems, we investigate the relative energetics of three distinct morphological stages that can be expressed by intermediates during solid-state reactions: i) dispersed molecules; ii) clustered molecular chains; and iii) condensed-phase crystals. Our results verify that the effective reaction energy landscape strongly depends on the morphological features and associated chemical environment, offering a possible explanation for observed discrepancies between X-ray diffraction and nuclear magnetic resonance measurements. Our theoretical understanding also provides physical and chemical insight into phase nucleation kinetics upon (de)hydrogenation of complex metal hydrides.

10.
Chemphyschem ; 20(10): 1404-1411, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30644619

RESUMO

Magnesium-based materials provide some of the highest capacities for solid-state hydrogen storage. However, efforts to improve their performance rely on a comprehensive understanding of thermodynamic and kinetic limitations at various stages of (de)hydrogenation. Part of the complexity arises from the fact that unlike interstitial metal hydrides that retain the same crystal structures of the underlying metals, MgH2 and other magnesium-based hydrides typically undergo dehydrogenation reactions that are coupled to a structural phase transformation. As a first step towards enabling molecular dynamics studies of thermodynamics, kinetics, and (de)hydrogenation mechanisms of Mg-based solid-state hydrogen storage materials with changing crystal structures, we have developed an analytical bond order potential for Mg-H systems. We demonstrate that our potential accurately reproduces property trends of a variety of elemental and compound configurations with different coordinations, including small clusters and bulk lattices. More importantly, we show that our potential captures the relevant (de)hydrogenation chemical reactions 2H (gas)→H2 (gas) and 2H (gas)+Mg (hcp)→MgH2 (rutile) within molecular dynamics simulations. This verifies that our potential correctly prescribes the lowest Gibbs free energies to the equilibrium H2 and MgH2 phases as compared to other configurations. It also indicates that our molecular dynamics methods can directly reveal atomic processes of (de)hydrogenation of the Mg-H systems.

11.
Chemphyschem ; 20(10): 1305-1310, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30900285

RESUMO

Stability of metal-organic frameworks (MOFs) under hydrogen is of particular importance for a diverse range of applications, including catalysis, gas separations, and hydrogen storage. Hydrogen in gaseous form is known to be a strong reducing agent and can potentially react with the secondary building units of a MOF and decompose the porous framework structure. Moreover, rapid pressure swings expected in vehicular hydrogen storage could create significant mechanical stresses within MOF crystals that cause partial or complete pore collapse. In this work, we examined the stability of a structurally representative suite of MOFs by testing them under both static (70 MPa) and dynamic hydrogen exposure (0.5 to 10 MPa, 1000 pressure cycles) at room temperature. We aim to provide stability information for development of near room-temperature hydrogen storage media based on MOFs and suggest framework design rules to avoid materials unstable for hydrogen storage under relevant technical conditions.

12.
Chemphyschem ; 20(10): 1261-1271, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30737862

RESUMO

In this article, the capabilities of soft and hard X-ray techniques, including X-ray absorption (XAS), soft X-ray emission spectroscopy (XES), resonant inelastic soft X-ray scattering (RIXS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), and their application to solid-state hydrogen storage materials are presented. These characterization tools are indispensable for interrogating hydrogen storage materials at the relevant length scales of fundamental interest, which range from the micron scale to nanometer dimensions. Since nanostructuring is now well established as an avenue to improve the thermodynamics and kinetics of hydrogen release and uptake, due to properties such as reduced mean free paths of transport and increased surface-to-volume ratio, it becomes of critical importance to explicitly identify structure-property relationships on the nanometer scale. X-ray diffraction and spectroscopy are effective tools for probing size-, shape-, and structure-dependent material properties at the nanoscale. This article also discusses the recent development of in-situ soft X-ray spectroscopy cells, which enable investigation of critical solid/liquid or solid/gas interfaces under more practical conditions. These unique tools are providing a window into the thermodynamics and kinetics of hydrogenation and dehydrogenation reactions and informing a quantitative understanding of the fundamental energetics of hydrogen storage processes at the microscopic level. In particular, in-situ soft X-ray spectroscopies can be utilized to probe the formation of intermediate species, byproducts, as well as the changes in morphology and effect of additives, which all can greatly affect the hydrogen storage capacity, kinetics, thermodynamics, and reversibility. A few examples using soft X-ray spectroscopies to study these materials are discussed to demonstrate how these powerful characterization tools could be helpful to further understand the hydrogen storage systems.

13.
Chemphyschem ; 20(15): 1997-2009, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31177637

RESUMO

In order to determine a material's hydrogen storage potential, capacity measurements must be robust, reproducible, and accurate. Commonly, research reports focus on the gravimetric capacity, and often times the volumetric capacity is not reported. Determining volumetric capacities is not as straight-forward, especially for amorphous materials. This is the first study to compare measurement reproducibility across laboratories for excess and total volumetric hydrogen sorption capacities based on the packing volume. The use of consistent measurement protocols, common analysis, and figure of merits for reporting data in this study, enable the comparison of the results for two different materials. Importantly, the results show good agreement for excess gravimetric capacities amongst the laboratories. Irreproducibility for excess and total volumetric capacities is attributed to real differences in the measured packing volume of the material.

14.
Phys Chem Chem Phys ; 20(23): 16266-16275, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29863201

RESUMO

The hydrogen absorption properties of metal closo-borate/metal hydride composites, M2B10H10-8MH and M2B12H12-10MH, M = Li or Na, are studied under high hydrogen pressures to understand the formation mechanism of metal borohydrides. The hydrogen storage properties of the composites have been investigated by in situ synchrotron radiation powder X-ray diffraction at p(H2) = 400 bar and by ex situ hydrogen absorption measurements at p(H2) = 526 to 998 bar. The in situ experiments reveal the formation of crystalline intermediates before metal borohydrides (MBH4) are formed. On the contrary, the M2B12H12-10MH (M = Li and Na) systems show no formation of the metal borohydride at T = 400 °C and p(H2) = 537 to 970 bar. 11B MAS NMR of the M2B10H10-8MH composites reveal that the molar ratio of LiBH4 or NaBH4 and the remaining B species is 1 : 0.63 and 1 : 0.21, respectively. Solution and solid-state 11B NMR spectra reveal new intermediates with a B : H ratio close to 1 : 1. Our results indicate that the M2B10H10 (M = Li, Na) salts display a higher reactivity towards hydrogen in the presence of metal hydrides compared to the corresponding [B12H12]2- composites, which represents an important step towards understanding the factors that determine the stability and reversibility of high hydrogen capacity metal borohydrides for hydrogen storage.

15.
Chem Soc Rev ; 46(12): 3853, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28585654

RESUMO

Correction for 'An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors' by Ivo Stassen et al., Chem. Soc. Rev., 2017, DOI: 10.1039/c7cs00122c.

16.
Phys Chem Chem Phys ; 19(29): 19461-19467, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28718471

RESUMO

Two-dimensional (2D) materials have attracted much attention due to their novel properties. An exciting new class of 2D materials based on metal-organic frameworks (MOFs) has recently emerged, displaying high electrical conductivity, a rarity among organic nanoporous materials. The emergence of these materials raises intriguing questions about their fundamental electronic, optical, and thermal properties, but few studies exist in this regard. Here we present an atomistic study of the thermoelectric properties of crystalline 2D MOFs X3(HITP)2 with X = Ni, Pd or Pt, and HITP = 2,3,6,7,10,11-hexaiminotriphenylene, using both ab initio transport models and classical molecular dynamics simulations. We find that these materials have a high Seebeck coefficient and low thermal conductivity, making them promising for thermoelectric applications. Furthermore, we explore the dependence of thermoelectric transport properties on the atomic structure by comparing the calculated band structure, band alignment, and electronic density of states of the three 2D MOFs, and find that the thermoelectric transport properties strongly depend on both the interaction between the ligands and the metal ions, and the d orbital splitting of the metal ions induced by the ligands. This demonstrates that selection of the metal ion is a powerful approach to control and enhance the thermoelectric properties. Interestingly we reveal an unexpected effect where, unlike for electrons, the thermal and electrical current may not be equally carried by the holes, leading to a significant deviation from the Wiedemann-Franz law. The results of this work provide fundamental guidance to optimize the existing 2D MOFs, and to design and discover new families of MOF-like materials for thermoelectric applications.

17.
Inorg Chem ; 55(15): 7233-49, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27399607

RESUMO

As the world transitions from fossil fuels to clean energy sources in the coming decades, many technological challenges will require chemists and material scientists to develop new materials for applications related to energy conversion, storage, and efficiency. Because of their unprecedented adaptability, metal-organic frameworks (MOFs) will factor strongly in this portfolio. By utilizing the broad synthetic toolkit provided by the fields of organic and inorganic chemistry, MOF pores can be customized to suit a particular application. Of particular importance is the ability to tune the strength of the interaction between the MOF pores and guest molecules. By cleverly controlling these MOF-guest interactions, the chemist may impart new function into the Guest@MOF materials otherwise lacking in vacant MOF. Herein, we highlight the concept of the Guest@MOF as it relates to our efforts to develop these materials for energy-related applicatons. Our work in the areas of H2 and noble gas storage, hydrogenolysis of biomass, light-harvesting, and conductive materials will be discussed. Of relevance to light-harvesting applications, we report for the first time a postsynthetic modification strategy for increasing the loading of a light-sensitive electron-donor molecule in the pores of a functionalized MIL-101 structure. Through the demonstrated versatility of these approaches, we show that, by treating guest molecules as integral design elements for new MOF constructs, MOF science can have a significant impact on the advancement of clean energy technologies.

18.
J Phys Chem Lett ; 15(5): 1500-1506, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38299540

RESUMO

Efficient prediction of sampling-intensive thermodynamic properties is needed to evaluate material performance and permit high-throughput materials modeling for a diverse array of technology applications. To alleviate the prohibitive computational expense of high-throughput configurational sampling with density functional theory (DFT), surrogate modeling strategies like cluster expansion are many orders of magnitude more efficient but can be difficult to construct in systems with high compositional complexity. We therefore employ minimal-complexity graph neural network models that accurately predict and can even extrapolate to out-of-train distribution formation energies of DFT-relaxed structures from an ideal (unrelaxed) crystallographic representation. This enables the large-scale sampling necessary for various thermodynamic property predictions that may otherwise be intractable and can be achieved with small training data sets. Two exemplars, optimizing the thermodynamic stability of low-density high-entropy alloys and modulating the plateau pressure of hydrogen in metal alloys, demonstrate the power of this approach, which can be extended to a variety of materials discovery and modeling problems.

19.
Chemphyschem ; 14(16): 3740-50, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24123984

RESUMO

A set of 98 nanoporous framework material (NFM) structures was investigated by classical Grand canonical Monte Carlo simulations for low-pressure O2 adsorption properties (Henry's constant and isosteric heat of adsorption). The set of materials includes those that have shown high O2 uptake experimentally as well as a subset of more than 2000 structures previously screened for noble-gas uptake. While use of the general force field UFF is fruitful for noble-gas adsorption studies, its use is shown to be limited for the case of O2 adsorption-one distinct limitation is a lack of sufficient O2 -metal interactions to be able to describe O2 interaction with open metal sites. Nonetheless, those structures without open metal sites that have very small pores (<2.5 Å) show increased O2 /N2 selectivity. Additionally, O2 /N2 mixture simulations show that in some cases, H2 O or N2 can hinder O2 uptake for NFMs with small pores due to competitive adsorption.

20.
Phys Chem Chem Phys ; 15(23): 9093-106, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23646358

RESUMO

The adsorption of noble gases and nitrogen by sixteen metal-organic frameworks (MOFs) was investigated using grand canonical Monte Carlo simulation. The MOFs were chosen to represent a variety of net topologies, pore dimensions, and metal centers. Three commercially available MOFs (HKUST-1, AlMIL-53, and ZIF-8) and PCN-14 were also included for comparison. Experimental adsorption isotherms, obtained from volumetric and gravimetric methods, were used to compare krypton, argon, and nitrogen uptake with the simulation results. Simulated trends in gas adsorption and predicted selectivities among the commercially available MOFs are in good agreement with experiment. In the low pressure regime, the expected trend of increasing adsorption with increasing noble gas polarizabilty is seen. For each noble gas, low pressure adsorption correlates with several MOF properties, including free volume, topology, and metal center. Additionally, a strong correlation exists between the Henry's constant and the isosteric heat of adsorption for all gases and MOFs considered. Finally, we note that the simulated and experimental gas selectivities demonstrated by this small set of MOFs show improved performance compared to similar values reported for zeolites.


Assuntos
Gases Nobres/isolamento & purificação , Compostos Organometálicos/química , Adsorção , Ar/análise , Simulação por Computador , Estruturas Metalorgânicas , Modelos Químicos , Modelos Moleculares , Método de Monte Carlo , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA