RESUMO
While the climate and human-induced forest degradation is increasing in the Amazon, fire impacts on forest dynamics remain understudied in the wetter regions of the basin, which are susceptible to large wildfires only during extreme droughts. To address this gap, we installed burned and unburned plots immediately after a wildfire in the northern Purus-Madeira (Central Amazon) during the 2015 El-Niño. We measured all individuals with diameter of 10 cm or more at breast height and conducted recensuses to track the demographic drivers of biomass change over 3 years. We also assessed how stem-level growth and mortality were influenced by fire intensity (proxied by char height) and tree morphological traits (size and wood density). Overall, the burned forest lost 27.3% of stem density and 12.8% of biomass, concentrated in small and medium trees. Mortality drove these losses in the first 2 years and recruitment decreased in the third year. The fire increased growth in lower wood density and larger sized trees, while char height had transitory strong effects increasing tree mortality. Our findings suggest that fire impacts are weaker in the wetter Amazon. Here, trees of greater sizes and higher wood densities may confer a margin of fire resistance; however, this may not extend to higher intensity fires arising from climate change.
Assuntos
Incêndios , Incêndios Florestais , Secas , Florestas , Humanos , ÁrvoresRESUMO
Tropical deforestation drivers are complex and can change rapidly in periods of profound societal transformation, such as those during a pandemic. Evidence suggests that the COVID-19 pandemic has spurred illegal, opportunistic forest clearing in tropical countries, threatening forest ecosystems and their resident human communities. A total of 9583 km2 of deforestation alerts from Global Land Analysis & Discovery (GLAD) were detected across the global tropics during the first month following the implementation of confinement measures of local governments to reduce COVID-19 spread, which is nearly double that of 2019 (4732 km2). We present a conceptual framework linking tropical deforestation and the current pandemic. Zoonotic diseases, public health, economy, agriculture, and forests may all be reciprocally linked in complex positive and negative feedback loops with overarching consequences. We highlight the emerging threats to nature and society resulting from this complex reciprocal interplay and possible policy interventions that could minimize these threats.