RESUMO
Medical imaging stands as a critical component in diagnosing various diseases, where traditional methods often rely on manual interpretation and conventional machine learning techniques. These approaches, while effective, come with inherent limitations such as subjectivity in interpretation and constraints in handling complex image features. This research paper proposes an integrated deep learning approach utilizing pre-trained models-VGG16, ResNet50, and InceptionV3-combined within a unified framework to improve diagnostic accuracy in medical imaging. The method focuses on lung cancer detection using images resized and converted to a uniform format to optimize performance and ensure consistency across datasets. Our proposed model leverages the strengths of each pre-trained network, achieving a high degree of feature extraction and robustness by freezing the early convolutional layers and fine-tuning the deeper layers. Additionally, techniques like SMOTE and Gaussian Blur are applied to address class imbalance, enhancing model training on underrepresented classes. The model's performance was validated on the IQ-OTH/NCCD lung cancer dataset, which was collected from the Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases over a period of three months in fall 2019. The proposed model achieved an accuracy of 98.18%, with precision and recall rates notably high across all classes. This improvement highlights the potential of integrated deep learning systems in medical diagnostics, providing a more accurate, reliable, and efficient means of disease detection.
Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Redes Neurais de ComputaçãoRESUMO
Breast cancer, a prevalent cancer among women worldwide, necessitates precise and prompt detection for successful treatment. While conventional histopathological examination is the benchmark, it is a lengthy process and prone to variations among different observers. Employing machine learning to automate the diagnosis of breast cancer presents a viable option, striving to improve both precision and speed. Previous studies have primarily focused on applying various machine learning and deep learning models for the classification of breast cancer images. These methodologies leverage convolutional neural networks (CNNs) and other advanced algorithms to differentiate between benign and malignant tumors from histopathological images. Current models, despite their potential, encounter obstacles related to generalizability, computational performance, and managing datasets with imbalances. Additionally, a significant number of these models do not possess the requisite transparency and interpretability, which are vital for medical diagnostic purposes. To address these limitations, our study introduces an advanced machine learning model based on EfficientNetV2. This model incorporates state-of-the-art techniques in image processing and neural network architecture, aiming to improve accuracy, efficiency, and robustness in classification. We employed the EfficientNetV2 model, fine-tuned for the specific task of breast cancer image classification. Our model underwent rigorous training and validation using the BreakHis dataset, which includes diverse histopathological images. Advanced data preprocessing, augmentation techniques, and a cyclical learning rate strategy were implemented to enhance model performance. The introduced model exhibited remarkable efficacy, attaining an accuracy rate of 99.68%, balanced precision and recall as indicated by a significant F1 score, and a considerable Cohen's Kappa value. These indicators highlight the model's proficiency in correctly categorizing histopathological images, surpassing current techniques in reliability and effectiveness. The research emphasizes improved accessibility, catering to individuals with disabilities and the elderly. By enhancing visual representation and interpretability, the proposed approach aims to make strides in inclusive medical image interpretation, ensuring equitable access to diagnostic information.
RESUMO
Handwritten prescriptions and radiological reports: doctors use handwritten prescriptions and radiological reports to give drugs to patients who have illnesses, injuries, or other problems. Clinical text data, like physician prescription visuals and radiology reports, should be labelled with specific information such as disease type, features, and anatomical location for more effective use. The semantic annotation of vast collections of biological and biomedical texts, like scientific papers, medical reports, and general practitioner observations, has lately been examined by doctors and scientists. By identifying and disambiguating references to biomedical concepts in texts, medical semantics annotators could generate such annotations automatically. For Medical Images (MedIMG), we provide a methodology for learning an effective holistic representation (handwritten word pictures as well as radiology reports). Deep Learning (DL) methods have recently gained much interest for their capacity to achieve expert-level accuracy in automated MedIMG analysis. We discovered that tasks requiring significant responsive fields are ideal for downscaled input images that are qualitatively verified by examining functional, responsive areas and class activating maps for training models. This article focuses on the following contributions: (a) Information Extraction from Narrative MedImages, (b) Automatic categorisation on image resolution with an impact on MedIMG, and (c) Hybrid Model to Predictions of Named Entity Recognition utilising RNN + LSTM + GRM that perform admirably in every trainee for every input purpose. At the same time, supplying understandable scale weight implies that such multi-scale structures are also crucial for extracting information from high-resolution MedIMG. A portion of the reports (30%) are manually evaluated by trained physicians, while the rest were automatically categorised using deep supervised training models based on attention mechanisms and supplied with test reports. MetaMapLite proved recall and precision, but also an F1-score equivalent for primary biomedicine text search techniques and medical text examination on many databases of MedIMG. In addition to implementing as well as getting the requirements for MedIMG, the article explores the quality of medical data by using DL techniques for reaching large-scale labelled clinical data and also the significance of their real-time efforts in the biomedical study that have played an instrumental role in its extramural diffusion and global appeal.