Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(24): E3451-60, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247403

RESUMO

TGF-ß, the most potent profibrogenic factor, acts by activating SMAD (mothers against decapentaplegic) transcription factors, which bind to SMAD-binding elements in target genes. Here, we show that the thyroid hormone triiodothyronine (T3), through binding to its nuclear receptors (TRs), is able to antagonize transcriptional activation by TGF-ß/SMAD. This antagonism involves reduced phosphorylation of SMADs and a direct interaction of the receptors with SMAD3 and SMAD4 that is independent of T3-mediated transcriptional activity but requires residues in the receptor DNA binding domain. T3 reduces occupancy of SMAD-binding elements in response to TGF-ß, reducing histone acetylation and inhibiting transcription. In agreement with this transcriptional cross-talk, T3 is able to antagonize fibrotic processes in vivo. Liver fibrosis induced by carbon tetrachloride is attenuated by thyroid hormone administration to mice, whereas aged TR knockout mice spontaneously accumulate collagen. Furthermore, skin fibrosis induced by bleomycin administration is also reduced by the thyroid hormones. These findings define an important function of the thyroid hormone receptors and suggest TR ligands could have beneficial effects to block the progression of fibrotic diseases.


Assuntos
Cirrose Hepática/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Tri-Iodotironina/metabolismo , Animais , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Intoxicação por Tetracloreto de Carbono/genética , Intoxicação por Tetracloreto de Carbono/metabolismo , Intoxicação por Tetracloreto de Carbono/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/patologia , Camundongos , Camundongos Knockout , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/genética , Tri-Iodotironina/genética
2.
Proc Natl Acad Sci U S A ; 113(3): E328-37, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26729869

RESUMO

Nuclear corepressor 1 (NCoR) associates with nuclear receptors and other transcription factors leading to transcriptional repression. We show here that NCoR depletion enhances cancer cell invasion and increases tumor growth and metastatic potential in nude mice. These changes are related to repressed transcription of genes associated with increased metastasis and poor prognosis in patients. Strikingly, transient NCoR silencing leads to heterochromatinization and stable silencing of the NCoR gene, suggesting that NCoR loss can be propagated, contributing to tumor progression even in the absence of NCoR gene mutations. Down-regulation of the thyroid hormone receptor ß1 (TRß) appears to be associated with cancer onset and progression. We found that expression of TRß increases NCoR levels and that this induction is essential in mediating inhibition of tumor growth and metastasis by this receptor. Moreover, NCoR is down-regulated in human hepatocarcinomas and in the more aggressive breast cancer tumors, and its expression correlates positively with that of TRß. These data provide a molecular basis for the anticancer actions of this corepressor and identify NCoR as a potential molecular target for development of novel cancer therapies.


Assuntos
Homeostase , Correpressor 1 de Receptor Nuclear/genética , Idoso , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA/genética , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Heterocromatina/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/metabolismo , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/metabolismo , Receptores beta dos Hormônios Tireóideos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Pharmacol Res ; 108: 75-79, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27149915

RESUMO

Nuclear Receptor Corepressor 1 (NCoR) is an important transcriptional regulator that interacts with nuclear receptors and other transcription factors. Recent results have shown the presence of inactivating mutations or deletions of the NCoR gene in human tumors. NCoR has a strong tumor suppressor activity, inhibiting invasion, metastasis formation and tumor growth in xenograft mouse models. These changes are associated to transcriptional inhibition of genes linked to bad prognosis and increased metastasis in cancer patients. NCoR loss causes a long-term repression of NCoR gene transcription, suggesting that NCoR deficiency in the cancer cell could be propagated playing a role in tumor progression in the absence of NCoR gene mutations. The thyroid hormone receptor TRß increases NCoR expression and this induction is essential in mediating the anti-metastatic and tumor suppressive actions of the receptor. Since metastasis is the main cause of cancer-related deaths, these results define NCoR as a potential target for cancer therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Correpressor 1 de Receptor Nuclear/genética , Animais , Humanos , Mutação , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Neoplasias/patologia , Ativação Transcricional , Proteínas Supressoras de Tumor/genética
4.
Pediatr Endocrinol Rev ; 11(1): 2-13, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24079074

RESUMO

The important physiological actions of the thyroid hormones are mediated by binding to nuclear thyroid hormone receptors (TRs), encoded by two genes TRalpha and TRbeta. These receptors act as hormone-dependent transcription factors by binding to DNA motifs located in the regulatory regions of target genes and recruiting coregulators (coactivators and corepresors), which alter chromatin structure. Novel thyromimetics have been developed that bind preferentially TRbeta could be used for treatment of hyperlipidemia and obesity. TRbeta gene mutations cause resistance to thyroid hormones (RTH), characterized by inappropriately high thyroid-stimulating hormone (TSH) levels due to lack of feedback inhibition of thyroid hormones on the hypothalamus and pituitary gland, and to reduced sensitivity of other TRbeta target tissues to thyroid hormones. Very recently, patients heterozygous for TRalpha mutations have been identified. These patients exhibit clinical symptoms of hypothyroidism in TRalpha target tissues such as intestine or hearth and near normal circulating TSH and thyroid hormone levels.


Assuntos
Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/fisiologia , Doenças da Glândula Tireoide/genética , Doenças da Glândula Tireoide/fisiopatologia , Hormônios Tireóideos/fisiologia , Criança , Humanos
5.
Thyroid ; 30(1): 116-132, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760908

RESUMO

Background: A subpopulation of cancer stem cells (CSCs) with capacity for self-renewal is believed to drive initiation, progression, and relapse of breast tumors. Methods: Since the thyroid hormone receptor ß (TRß) appears to suppress breast tumor growth and metastasis, we have analyzed the possibility that TRß could affect the CSC population using MCF-7 cells grown under adherent conditions or as mammospheres, as well as inoculation into immunodeficient mice. Results: Treatment of TRß-expressing MCF-7 cells (MCF7-TRß cells) with the thyroid hormone triiodothyronine (T3) decreased significantly CD44+/CD24- and ALDH+ cell subpopulations, the efficiency of mammosphere formation, the self-renewal capacity of CSCs in limiting dilution assays, the expression of the pluripotency factors in the mammospheres, and tumor initiating capacity in immunodeficient mice, indicating that the hormone reduces the CSC population present within the bulk MCF7-TRß cultures. T3 also decreased migration and invasion, a hallmark of CSCs. Transcriptome analysis showed downregulation of the estrogen receptor alpha (ERα) and ER-responsive genes by T3. Furthermore, among the T3-repressed genes, there was an enrichment in genes containing binding sites for transcription factors that are key determinants of luminal-type breast cancers and are required for ER binding to chromatin. Conclusion: We demonstrate a novel role of TRß in the biology of CSCs that may be related to its action as a tumor suppressor in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Receptores beta dos Hormônios Tireóideos/genética , Tri-Iodotironina/farmacologia
6.
Oncotarget ; 7(48): 78971-78984, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27806339

RESUMO

Vascular Endotelial Growth Factors C and D (VEGF-C and VEGF-D) are crucial regulators of lymphangiogenesis, a main event in the metastatic spread of breast cancer tumors. Although inhibition of lymphangiogenic gene expression might be a useful therapeutic strategy to restrict the progression of cancer, the factors involved in the transcriptional repression of these genes are still unknown. We have previously shown that Nuclear Receptor Corepressor 1 (NCoR) and the thyroid hormone receptor ß1 (TRß) inhibit tumor invasion. Here we show that these molecules repress VEGF-C and VEGF-D gene transcription in breast cancer cells, reducing lymphatic vessel density and sentinel lymph node invasion in tumor xenografts. The clinical significance of these results is stressed by the finding that NCoR and TRß transcripts correlate negatively with those of the lymphangiogenic genes and the lymphatic vessel marker LYVE-1 in human breast tumors. Our results point to the use of NCoR and TRß as potential biomarkers for diagnosis or prognosis in breast cancer and suggest that further studies of these molecules as potential targets for anti-lymphangiogenic therapy are warranted.


Assuntos
Neoplasias da Mama/genética , Metástase Linfática/patologia , Correpressor 1 de Receptor Nuclear/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Correpressor 1 de Receptor Nuclear/genética , Prognóstico , Transcrição Gênica , Fator C de Crescimento do Endotélio Vascular/genética , Fator D de Crescimento do Endotélio Vascular/genética , Proteínas de Transporte Vesicular/genética
7.
Sci Rep ; 6: 30990, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27484112

RESUMO

Decreased thyroidal hormone production is found during lipopolysaccharide (LPS)-induced endotoxic shock in animals as well as in critically ill patients. Here we studied the role of the thyroid hormone receptors (TRs) in activation of STAT3, NF-κB and ERK, which play a key role in the response to inflammatory cytokines during sepsis. TR knockout mice showed down-regulation of hepatic inflammatory mediators, including interleukin 6 (IL-6) in response to LPS. Paradoxically, STAT3 and ERK activity were higher, suggesting that TRs could act as endogenous repressors of these pathways. Furthermore, hyperthyroidism increased cytokine production and mortality in response to LPS, despite decreasing hepatic STAT3 and ERK activity. This suggested that TRs could directly repress the response of the cells to inflammatory mediators. Indeed, we found that the thyroid hormone T3 suppresses IL-6 signalling in macrophages and hepatocarcinoma cells, inhibiting STAT3 activation. Consequently, the hormone strongly antagonizes IL-6-stimulated gene transcription, reducing STAT3 recruitment and histone acetylation at IL-6 target promoters. In conclusion, TRs are potent regulators of inflammatory responses and immune homeostasis during sepsis. Reduced responses to IL-6 should serve as a negative feedback mechanism for preventing deleterious effects of excessive hormone signaling during infections.


Assuntos
Endotoxemia/etiologia , Interleucina-6/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , Fígado/imunologia , Receptores dos Hormônios Tireóideos/fisiologia , Hormônios Tireóideos/administração & dosagem , Animais , Endotoxemia/tratamento farmacológico , Endotoxemia/metabolismo , Endotoxemia/patologia , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA