Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 205(2): 63, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629970

RESUMO

Saxitoxins (STXs) are carbamate alkaloid neurotoxins produced by some species of cyanobacteria. They are water soluble and relatively stable in the natural environment, and thereby represent a risk to animal and human health through a long-time exposure. STXs cannot be sufficiently removed by conventional water treatment methods. Therefore, this study investigates the potential STX biodegradation and detoxification by bacteria as a promising method for toxin removal. STX biodegradation experiments were conducted using Bacillus flexus SSZ01 strain in batch cultures. The results revealed that SSZ01 strain grew well and rapidly detoxified STX, with no lag phase observed. STX detoxification by SSZ01 strain was initial-toxin-concentration-dependent. The highest biotransformation rate (10 µg STX L-1 day-1) the pseudo-first-order kinetic constant (0.58 d-1) were obtained at the highest initial toxin concentration (50 µg L-1) and the lowest ones (0.06 µg STX L-1 day-1 and 0.14 d-1, respectively) were recorded at the lowest initial concentration (0.5 µg L-1). STX biotransformation rate increased with temperature, with highest occurred at 30 ºC. This rate was also influenced by pH, with highest obtained at pH8 and lowest at higher and lower pH values. HPLC chromatograms showed that STX biotransformation peak is corresponding to the least toxic STX analog (disulfated sulfocarbamoyl-C1 variant). The Artemia-based toxicity assay revealed that this biotransformation byproduct was nontoxic. This suggests the potential application of this bacterial strain in slow sand filters for cyanotoxin removal in water treatment plants. Being nontoxic, this byproduct needs to be assayed for its therapeutic effects toward neurodegenerative diseases.


Assuntos
Cianobactérias , Saxitoxina , Animais , Humanos , Saxitoxina/análise , Saxitoxina/metabolismo , Saxitoxina/toxicidade , Cianobactérias/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão
2.
Bull Environ Contam Toxicol ; 110(1): 40, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627388

RESUMO

Predictive models were generated to evaluate the degree to which nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were absorbed by the leaves, stems and roots of forage sorghum in growing media comprising soil admixed with poultry manure concentrations of 0, 10, 20, 30 and 40 g/kg. The data revealed that the greatest contents of the majority of the metals were evident in the roots rather than in the stems and leaves. A bioaccumulation factor (BAF) < 1 was calculated for Cr, Fe, Ni, Pb and Zn; BAF values for Co, Cu, Mn and Cd were 3.99, 2.33, 1.44 and 1.40, respectively, i.e., > 1. Translocation factor values were < 1 for all metals with the exception of Co, Cr and Ni, which displayed values of 1.20, 1.67 and 1.35 for the leaves, and 1.12, 1.23 and 1.24, respectively, for the stems. The soil pH had a negative association with metal tissues in plant parts. A positive relationship was observed with respect to plant metal contents, electrical conductivity and organic matter quantity. The designed models exhibited a high standard of data precision; any variations between the predicted and experimentally observed contents for the nine metals in the three plant tissue components were nonsignificant. Thus, it was concluded that the presented predictive models constitute a pragmatic tool to establish the safety from risk to human well-being with respect to growing forage sorghum when cultivating media fortified with poultry manure.


Assuntos
Metais Pesados , Poluentes do Solo , Sorghum , Animais , Humanos , Solo/química , Esterco , Metais Pesados/análise , Aves Domésticas , Cádmio , Chumbo , Poluentes do Solo/análise , Monitoramento Ambiental
3.
Arch Microbiol ; 204(5): 248, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397012

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are the hazardous xenobiotic agents of oil production. One of the methods to eliminate hazardous compounds is bioremediation, which is the most efficient and cost-effective method to eliminate the harmful byproducts of crude petroleum processing. In this study, five pure bacterial isolates were isolated from petroleum-contaminated soil, four of which showed a robust growth on the PAH pyrene, as a sole carbon source. Various methods viz mass spectroscopy, biochemical assays, and 16S RNA sequencing employed to identify the isolates ascertained the consistent identification of Klebsiella oxytoca by all three methods. Scanning electron microscopy and Gram staining further demonstrated the characterization of the K. oxytoca. High-performance liquid chromatography of the culture supernatant of K. oxytoca grown in pyrene containing media showed that the cells started utilizing pyrene from the 6th day onwards and by the 12th day of growth, 70% of the pyrene was completely degraded. A genome search for the genes predicted to be involved in pyrene degradation using Kyoto Encyclopedia of Genes and Genomes (KEGG) confirmed their presence in the genome of K. oxytoca. These results suggest that K. oxytoca would be a suitable candidate for removing soil aromatic hydrocarbons.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Klebsiella oxytoca/genética , Klebsiella oxytoca/metabolismo , Petróleo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo
4.
Andrologia ; 53(8): e14115, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34014595

RESUMO

Quinalphos (QP) is one of the most commonly used organophosphate pesticide for agriculture. In this study, adult Swiss albino male mice were orally administered with 0.25, 0.5 and 1.0 mg/kg of QP (Ekalux 25 E.C.) for ten consecutive days and the reproductive function was assessed at 35 and 70 days after QP treatment. At highest dose (1.0 mg/kg), QP exposure resulted in significant decrease in motility and increase in sperm head defects and DNA damage. Pharmacokinetic data showed a threefold increase in concentration of QP in the testis as compared to serum. QP was detectable in testes even after 24 hr of administration indicating slow clearance from tissue. In addition, high oestradiol, low testosterone level with a parallel increase in aromatase and cytochrome P450 transcript levels was observed. Significant decrease in fertilisation, lower blastocyst rate and poor blastocyst quality was observed when spermatozoa collected from QP exposed mice were subjected to in vitro fertilisation. In conclusion, exposure of QP to male mice decreases the sperm functional competence and fertilising ability, which appears to be mediated through elevated oxidative stress and altered steroidogenesis in testes.


Assuntos
Compostos Organofosforados , Praguicidas , Animais , Fertilização , Masculino , Camundongos , Compostos Organotiofosforados , Praguicidas/toxicidade , Motilidade dos Espermatozoides , Espermatozoides , Testículo
5.
Molecules ; 26(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807313

RESUMO

L-glutaminase is an important anticancer agent that is used extensively worldwide by depriving cancer cells of L-glutamine. The marine bacterium, Halomonas meridian was isolated from the Red Sea and selected as the more active L-glutaminase-producing bacteria. L-glutaminase fermentation was optimized at 36 h, pH 8.0, 37 °C, and 3.0% NaCl, using glucose at 1.5% and soybean meal at 2%. The purified enzyme showed a specific activity of 36.08 U/mg, and the molecular weight was found to be 57 kDa by the SDS-PAGE analysis. The enzyme was highly active at pH 8.0 and 37 °C. The kinetics' parameters of Km and Vmax were 12.2 × 10-6 M and 121.95 µmol/mL/min, respectively, which reflects a higher affinity for its substrate. The anticancer efficiency of the enzyme showed significant toxic activity toward colorectal adenocarcinoma cells; LS 174 T (IC50 7.0 µg/mL) and HCT 116 (IC50 13.2 µg/mL). A higher incidence of cell death was observed with early apoptosis in HCT 116 than in LS 174 T, whereas late apoptosis was observed in LS 174 T more than in HCT 116. Also, the L-glutaminase induction nuclear fragmentation in HCT 116 was more than that in the LS 174T cells. This is the first report on Halomonas meridiana as an L-glutaminase producer that is used as an anti-colorectal cancer agent.


Assuntos
Antineoplásicos , Neoplasias Colorretais/patologia , Glutaminase , Halomonas/enzimologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Glutaminase/farmacologia , Células HCT116 , Humanos , Oceano Índico , Cinética , Peso Molecular , Especificidade por Substrato
6.
Environ Monit Assess ; 193(8): 510, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34302207

RESUMO

Prediction models were developed to estimate the extent to which aluminium, chromium, copper, iron, manganese, nickel, lead, and zinc were absorbed in the grains, leaves, stems, and roots of Sorghum bicolor cultivated in soil with various amendment rate of sewage sludge (0, 10, 20, 30, 40, and 50 g/kg) under greenhouse conditions. It was found that, aside from lead, all the examined metals occurred in significantly higher content in the roots compared to aerial tissues. Furthermore, the r-values were significantly negative between the bioconcentration factors of all metals, apart from aluminium and lead, and soil pH, whereas they were significantly positive between the bioconcentration factors, apart from lead, and soil organic matter content (OM). The r-values were typically significantly positive between the levels of all eight metals in the investigated tissues and in the soil. Moreover, the content of all the eight metals in the tissues exhibited a significant negative r-value with soil pH but a significant positive r-value with soil OM. The eight metal contents in the tissues given by the prediction models were quite similar to the real values, suggesting that the created models performed well, as shown by t-tests. It was thus concluded that prediction models were a viable option for evaluating how safe it was to grow S. bicolor in soils with sewage sludge content and at the same time for keeping track of possible human health hazards.


Assuntos
Metais Pesados , Poluentes do Solo , Sorghum , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Esgotos/análise , Solo , Poluentes do Solo/análise
7.
Molecules ; 25(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906348

RESUMO

The synthesis of bioplastic from marine microbes has a great attendance in the realm of biotechnological applications for sustainable eco-management. This study aims to isolate novel strains of poly-ß-hydroxybutyrate (PHB)-producing bacteria from the mangrove rhizosphere, Red Sea, Saudi Arabia, and to characterize the extracted polymer. The efficient marine bacterial isolates were identified by the phylogenetic analysis of the 16S rRNA genes as Tamlana crocina, Bacillus aquimaris, Erythrobacter aquimaris, and Halomonas halophila. The optimization of PHB accumulation by E. aquimaris was achieved at 120 h, pH 8.0, 35 °C, and 2% NaCl, using glucose and peptone as the best carbon and nitrogen sources at a C:N ratio of 9.2:1. The characterization of the extracted biopolymer by Fourier-transform infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR), and Gas chromatography-mass spectrometry (GC-MS) proves the presence of hydroxyl, methyl, methylene, methine, and ester carbonyl groups, as well as derivative products of butanoic acid, that confirmed the structure of the polymer as PHB. This is the first report on E. aquimaris as a PHB producer, which promoted the hypothesis that marine rhizospheric bacteria were a new area of research for the production of biopolymers of commercial value.


Assuntos
Biopolímeros/biossíntese , Biopolímeros/química , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Sphingomonadaceae/química , Sphingomonadaceae/metabolismo , Avicennia/microbiologia , Bacillus/química , Bacillus/genética , Bacillus/metabolismo , Biopolímeros/análise , Carbono/química , Carbono/metabolismo , Fermentação , Flavobacteriaceae/química , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Halomonas/química , Halomonas/genética , Halomonas/metabolismo , Hidroxibutiratos/análise , Espectroscopia de Ressonância Magnética , Nitrogênio/química , Nitrogênio/metabolismo , Filogenia , Poliésteres/análise , RNA Ribossômico 16S/genética , Rizosfera , Salinidade , Arábia Saudita , Água do Mar/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação , Temperatura
8.
Molecules ; 25(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331239

RESUMO

The wide distribution of infections-related pathogenic microbes is almost related to the contamination of food and/or drinking water. The current applied treatments face some limitations. In the current study, k-carrageenan polymer was used as supporting material for the proper/unreleased silver nanoparticles that showed strong antimicrobial activity against six pathogenic bacteria and yeast. The bio-extract of the pupa of green bottle fly was used as the main agent for the synthesis of silver nanoparticles. The qualitative investigation of biologically synthesized silver nanoparticles was determined using UV-Vis spectrophotometric analysis; however, the size of nanoparticles was in range of 30-100 nm, as confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and particle size analyzer. The proper integration of silver nanoparticles into the polymeric substrate was also characterized through fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), SEM, and tensile strength. The antimicrobial activity of k-carrageenan/silver nanoparticles against Gram positive, Gram negative, and yeast pathogens was highly effective. These results indicate the probable exploitation of the polymeric/nanoparticles composite as an extra stage in water purification systems in homes or even at water treatment plants.


Assuntos
Carragenina , Descontaminação/métodos , Água Potável , Química Verde , Nanopartículas Metálicas , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Carragenina/química , Técnicas de Química Sintética , Química Verde/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Estrutura Molecular , Prata/química , Termogravimetria
9.
Pak J Pharm Sci ; 33(5(Supplementary)): 2285-2291, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33832902

RESUMO

Silver nanoparticles were synthesized using extra virgin olive oil (Olea europaea L.) and sunflower oil (Helianthus annuus L.) and characterized by UV-vis spectroscopy, X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The brown color solution of olive oil nanoparticles (EVOO-NPs) and sunflower oil nanoparticles (SFO-NPs) showed typical absorption at 418 nm and 434 nm respectively. The morphology of extra virgin olive oil was found to be in semi cubic shapes with particle size of 23.45 nm (XRD) and 42.30 nm (SEM) while particle size of (SFO-NPs) had 42.30 nm (XRD) and 46.80 nm (SEM). Antimicrobial activities of crude extra virgin olive oil (EVOO), crude sunflower oil (SFO), synthesized nanoparticle from (EVOO-NPs) and (SFO-NPs) against human pathogenic strains were investigated. Synthesized nanoparticle from each oil showed a potent antimicrobial activity against all tested micro-organisms than crude oil which increased by (81.14% to 174.65 %) and by (111.65% to 192.31 %) than (EVOO) and (SFO) respectively. Both (EVOO-NPs) and (EVOO) had more antimicrobial activities than (SFO-NPs) and (SFO). EVOO (NPs) and SFO (NPs) showed maximum antibacterial activities against K. pneumoniae. Therefore (EVOO-NPs) and (SFO-NPs) could be used as safe natural product against multidrug resistant microbes.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Nanopartículas Metálicas , Azeite de Oliva/farmacologia , Compostos de Prata/farmacologia , Óleo de Girassol/farmacologia , Antibacterianos/química , Antifúngicos/química , Bactérias/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Composição de Medicamentos , Azeite de Oliva/química , Compostos de Prata/química , Óleo de Girassol/química
10.
Ecotoxicol Environ Saf ; 151: 28-34, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29304415

RESUMO

Seeking new efficient hydrocarbon-degrading yeast stains was the main goal of this study. Because microorganisms are greatly affected by the environmental factors, the biodegradation potentiality of the microorganisms varies from climatic area to another. This induces research to develop and optimize the endemic organisms in bioremediation technology. In this study, 67 yeast strains were tested for their growth potentiality on both aliphatic and aromatic hydrocarbons. The most efficient six strains were identified using sequence analysis of the variable D1/D2 domain of the large subunit 26S ribosomal DNA. The identity of these strains was confirmed as Yamadazyma mexicana KKUY-0160, Rhodotorula taiwanensis KKUY-0162, Pichia kluyveri KKUY-0163, Rhodotorula ingeniosa KKUY-0170, Candida pseudointermedia KKUY-0192 and Meyerozyma guilliermondii KKUY-0214. These species are approved for their ability to degrade both aliphatic and aromatic hydrocarbons for the first time in this study. Although, all of them were able to utilize and grow on both hydrocarbons, Rhodotorula taiwanensis KKUY-0162 emerged as the best degrader of octane, and Rhodotorula ingeniosa KKUY-170 was the best degrader of pyrene. GC-MS analysis approved the presence of many chemical compounds that could be transitional or secondary metabolites during the utilization of the hydrocarbons. Our results recommend the application of these yeast species on large scale to approve their efficiency in bioremediation of oil-contamination of the environment. Using these yeasts, either individually or in consortia, could offer a practical solution for aquatic or soil contamination with the crude oil and its derivatives in situ.


Assuntos
Hidrocarbonetos Acíclicos/análise , Hidrocarbonetos Aromáticos/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Leveduras/crescimento & desenvolvimento , Biodegradação Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Petróleo/análise , Filogenia , Rhodotorula/genética , Rhodotorula/crescimento & desenvolvimento , Leveduras/genética
11.
Int J Phytoremediation ; 20(14): 1418-1426, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30652486

RESUMO

The risk evaluation of polluted soil requires the application of precise models to predict the heavy metal uptake by plants so possible human risks can be identified. Therefore, the present work was conducted to develop regression models for predicting the concentrations of heavy metals in spinach plants from their concentration in the soil by using the organic matter content and soil pH as co-factors. The soil improved with sewage sludge was slightly alkaline and had a relatively high organic matter content. Similar to the soil analysis, Fe had the highest median concentration, while Cd had the lowest concentration in the roots and leaves. Heavy metals accumulated in the roots and leaves in the order Fe > Mn > Zn > Cu > Cr > Ni > Co > Pb > Cd. The bio-concentration factor of the investigated heavy metals, from soil to roots, did not exceed one. The spinach was recognized by a translocation factor <1.0 for all of the heavy metals except Zn. Plant heavy metal concentrations were positively correlated with the soil organic matter content and negatively correlated with soil pH. The leaf Cr, Fe and Zn and the root Cr, Fe, Pb and Zn concentrations were positively correlated with the respective soil heavy metals. In addition, a linear correlation was found between the bio-concentration factor of heavy metals and soil pH and organic matter content. Regression models with high model efficiency and coefficients of determination and low mean normalized average errors, which indicate the efficiency of the models, were produced for predicting the plant heavy metal contents by using the soil pH and organic matter content as co-factors.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Biodegradação Ambiental , Humanos , Esgotos/análise , Solo/química , Spinacia oleracea
12.
Environ Monit Assess ; 190(9): 501, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30084016

RESUMO

Heavy metal (HM) concentrations in edible plants can develop many serious health risks to humans. The precise prediction of plant uptake of HMs is highly important. Thus, the present investigation was carried out to develop regression models for predicting the concentrations of HMs in cucumbers (Cucumis sativus L.) from their concentration in the soil and using the organic matter (OM) content and soil pH as co-factors. The results showed that cucumber roots had the highest significant concentrations of all HMs at P < 0.001, except Cd, Cu, and Zn were in fruits. The lowest concentrations of Cd, Co, Cr, Mn, Ni, and Pb were recorded in stems. HM concentrations in cucumbers were strongly correlated with soil HM, pH, and OM content. Soil pH and OM content had negative and positive correlations with all HMs in cucumber tissues, respectively. Regression analysis indicated that soil HM, pH, and OM contents were good predictors for HM concentrations in cucumbers. The regression models for root Co, Cr, Fe, and Zn were described by high model efficiency values that explain 48-58% variability. The best regression models for cucumber stem were for Cu, Mn, Ni, and Zn that are characterized by high R2 and model efficiency values. For cucumber fruits, R2 values were ranged from 54 to 82%, with best models for Cr, Pb, Cd, Cu, Ni, and Co in the fruit. We expect that these models will be beneficial for risk assessment studies on sewage sludge utilization in agriculture.


Assuntos
Cucumis sativus/química , Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , Agricultura/métodos , Fertilizantes/análise , Humanos , Esgotos/análise , Esgotos/química , Solo/química , Eliminação de Resíduos Líquidos/métodos
13.
Int J Phytoremediation ; 19(4): 340-347, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-27593943

RESUMO

In this study, we present the response of spinach to different amendment rates of sewage sludge (0, 10, 20, 30, 40 and 50 g kg-1) in a greenhouse pot experiment, where plant growth, biomass and heavy metal uptake were measured. The results showed that sewage sludge application increased soil electric conductivity (EC), organic matter, chromium and zinc concentrations and decreased soil pH. All heavy metal concentrations of the sewage sludge were below the permissible limits for land application of sewage sludge recommended by the Council of the European Communities. Biomass and all growth parameters (except the shoot/root ratio) of spinach showed a positive response to sewage sludge applications up to 40 g kg-1 compared to the control soil. Increasing the sewage sludge amendment rate caused an increase in all heavy metal concentrations (except lead) in spinach root and shoot. However, all heavy metal concentrations (except chromium and iron) were in the normal range and did not reach the phytotoxic levels. The spinach was characterized by a bioaccumulation factor <1.0 for all heavy metals. The translocation factor (TF) varied among the heavy metals as well as among the sewage sludge amendment rates. Spinach translocation mechanisms clearly restricted heavy metal transport to the edible parts (shoot) because the TFs for all heavy metals (except zinc) were <1.0. In conclusion, sewage sludge used in the present study can be considered for use as a fertilizer in spinach production systems in Saudi Arabia, and the results can serve as a management method for sewage sludge.


Assuntos
Metais Pesados/metabolismo , Esgotos/análise , Poluentes do Solo/metabolismo , Spinacia oleracea/efeitos dos fármacos , Biodegradação Ambiental , Fertilizantes/análise , Arábia Saudita , Spinacia oleracea/crescimento & desenvolvimento , Spinacia oleracea/metabolismo , Poluentes Químicos da Água/metabolismo
14.
J Environ Biol ; 37(1): 75-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26930863

RESUMO

In the present study, thirty five bacterial isolates were obtained from hydrocarbon-contaminated soil samples using an enrichment method. These isolates were tested to grow on mineral salt medium containing anthracene or phenanthrene as sole carbon source. Only five isolates showed the ability to degrade these compounds. RAPD-PCR fingerprinting was carried out for the five isolates, and the DNA patterns revealed that there was no similarity among the examined bacteria whenever the RFLP using four restriction enzymes HaeIII, Msp1, Hinf1 and Taq1 failed to differentiate among them. Five bacterial isolates were grown in high concentration of anthracene and phenanthrene (4% w/v). Two bacterial isolates were selected due to their high ability to grow in the presence of high concentrations of anthracene and phenanthrene. The isolates were identified as Bacillus flexus and Ochrobactrum anthropi, based on DNA sequencing of amplified 16S rRNA gene and phylogenetic analysis. Finally, the ability of these bacterial strains to tolerate and remove different PAHs looked promising for application in bioremediation technologies.


Assuntos
Bactérias/genética , Impressões Digitais de DNA , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Filogenia , Hidrocarbonetos Policíclicos Aromáticos/química , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Técnica de Amplificação ao Acaso de DNA Polimórfico , Poluentes do Solo/química
15.
Pak J Pharm Sci ; 29(1): 221-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26826814

RESUMO

Nowadays,most of the pathogenic bacteria become resistant to antibiotics. Therefore,the pharmaceutical properties of the natural plant extracts have become of interest to researchers as alternative antimicrobial agents. In this study,antibacterial activities of extract gained from Acacia etbaica, Acacia laeta, Acacia origena and Acacia pycnantha have been evaluated against isolated pathogenic bacteria (Strains MFM-01, MFM-10 and AH-09) using agar well diffusion methods.The bacterial strains were isolated from infected individuals,and their exact identification was detected on the basis of 16S rRNA gene amplification and sequence determination. Alignment results and the comparison of 16 SrRN A gene sequences of the isolates to 16 SrRN A gene sequences available in Gen Bank data base as well as the phylogenetic analysis confirmed the accurate position of the isolates as Klebsiella oxytoca strain MFM-01, Staphylococcus aureus strain MFM-10 and Klebsiella pneumoniae strain AH-09. Except for cold water, all tested solvents (Chloroform, petroleum ether, methanol, diethyl ether, and acetone) showed variation in their activity against studied bacteria. GC-MS analysis of ethanol extracts showed that four investigated Acacia species have different phyto components. Eight important pharmaceutical components were found in the legume of Acacia etbaica, seven in the legume of Acacia laeta, fifteen in the legume of Acacia origena and nine in the leaves of Acacia pycnantha. A dendrogram was constructed based on chemical composition, revealed that Acacia laeta is more closely related to Acacia etbaica forming on eclade, whereas Acacia origena less similar to other species. Our results demonstrated that, investigated plants and chemical compounds present could be used as promising antibacterial agents.


Assuntos
Acacia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Acacia/química , Bactérias/classificação , Bactérias/genética , Análise por Conglomerados , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Testes de Sensibilidade Microbiana , Filogenia , RNA Ribossômico 16S/genética
16.
Pak J Pharm Sci ; 28(6): 2009-17, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26639478

RESUMO

In vitro antimicrobial efficacy of seven solvent extracts from leaves and hips of Saudi Arabian weed Rosa abyssinica against a variety of human pathogenic bacteria and Candida species have been evaluated using well diffusion methods. Phytochemicals present in the leaves and hips of Rosa abyssinica has been characterized using Gas Chromatogram Mass spectrometry analysis. The extracts comparative efficacy against tested microbes gained from the fresh and dry leaves exhibited more prominent activity than fresh and dry hips. The methanol, chloroform, petroleum ether, acetone and diethyl ether extracts have a greater lethal effect on pathogenic microbes than hot water extracts, while cold-water extracts showed no activity. Twenty-four phytochemicals have been characterized from ethanol extract of the leaves of Rosa abyssinica and fifteen from hips by GC-MS. The major compounds detected in the leaves were squalene (38.21%), ethane, 1,1-diethoxy- (9.65%), ß-D-glucopyranose, 1,6-anhydro- (8.55%), furfural (5.50%) and 2-furancarboxaldehyde 5-(hydroxymethyl)- (5.19%). The major compounds in the hips were 2-furancarboxaldehyde 5-(hydroxymethyl)- (51.27%), ß-D-glucopyranose, 1,6-anhydro- (8.18%), 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- (7.42%), 2,5-furandione, dihydro-3-methylene- (6.79%) and furfural (5.99%). Current findings indicate that extract from leaves and hips of Rosa abyssinica and the bioactive components present could be used as pharmaceutical agents.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Rosa/química , Antibacterianos/isolamento & purificação , Antifúngicos/isolamento & purificação , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Frutas , Compostos Fitoquímicos/isolamento & purificação , Fitoterapia , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Plantas Medicinais , Solventes/química
17.
Toxicon ; 247: 107846, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38964620

RESUMO

Microcystin (MC), a hepatotoxin that is harmful to human health, has frequently increased in freshwaters worldwide due to the increase in toxic cyanobacterial blooms. Despite many studies reported the human exposure to MC through drinking water, the potential transfer of this toxin to human via consumption of vegetables grown on farmlands that are naturally irrigated with contaminated water has not been largely investigated. Therefore, this study investigates the presence of MC in irrigation water and its potential accumulation in commonly consumed vegetables from Egyptian farmlands. The results of toxin analysis revealed that all irrigation water sites contained high MC concentrations (1.3-93.7 µg L-1) along the study period, in association with the abundance of dominant cyanobacteria in these sites. Meanwhile, MCs were detected in most vegetable plants surveyed, with highest levels in potato tubers (1100 µg kg-1 fresh weight, FW) followed by spinach (180 µg kg-1 FW), onion (170 µg g-1 FW), Swiss chard (160 µg kg-1 FW) and fava bean (46 µg kg-1 FW). These MC concentrations in vegetables led to estimated daily intake (EDI) values (0.08-1.13 µg kg bw-1 d-1 for adults and 0.11-1.5 µg kg bw-1 d-1 for children), through food consumption, exceeding the WHO recommended TDI (0.04 µg kg bw-1 d-1) for this toxin. As eutrophic water is widely used for irrigation in many parts of the world, our study suggests that cyanotoxins in irrigation waters and agricultural plants should be regularly monitored to safeguard the general public from inadvertent exposure to harmful toxins via food consumption.


Assuntos
Irrigação Agrícola , Contaminação de Alimentos , Inocuidade dos Alimentos , Microcistinas , Verduras , Microcistinas/análise , Egito , Medição de Risco , Verduras/química , Humanos , Contaminação de Alimentos/análise , Cianobactérias
18.
Front Microbiol ; 15: 1399331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006753

RESUMO

Various traditional management techniques are employed to control plant diseases caused by bacteria and fungi. However, due to their drawbacks and adverse environmental effects, there is a shift toward employing more eco-friendly methods that are less harmful to the environment and human health. The main aim of the study was to biosynthesize silver Nanoparticles (AgNPs) from Rhizoctonia solani and Cladosporium cladosporioides using a green approach and to test the antimycotic activity of these biosynthesized AgNPs against a variety of pathogenic fungi. The characterization of samples was done by using UV-visible spectroscopy, SEM (scanning electron microscopy), FTIR (fourier transmission infrared spectroscopy), and XRD (X-ray diffractometry). During the study, the presence of strong plasmon absorbance bands at 420 and 450 nm confirmed the AgNPs biosynthesis by the fungi Rhizoctonia solani and Cladosporium cladosporioides. The biosynthesized AgNPs were 80-100 nm in size, asymmetrical in shape and became spherical to sub-spherical when aggregated. Assessment of the antifungal activity of the silver nanoparticles against various plant pathogenic fungi was carried out by agar well diffusion assay. Different concentration of AgNPs, 5 mg/mL 10 mg/mL and 15 mg/mL were tested to know the inhibitory effect of fungal plant pathogens viz. Aspergillus flavus, Penicillium citrinum, Fusarium oxysporum, Fusarium metavorans, and Aspergillus aflatoxiformans. However, 15 mg/mL concentration of the AgNPs showed excellent inhibitory activity against all tested fungal pathogens. Thus, the obtained results clearly suggest that silver nanoparticles may have important applications in controlling various plant diseases caused by fungi.

19.
Nutrients ; 15(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36771391

RESUMO

The antibacterial, anticancer, and wound-healing effects of honey can vary according to the type, geographical region, honey bee species, and source of the flowers. Nanotechnology is an innovative and emerging field of science with an enormous potential role in medical, cosmetics, and industrial usages globally. Metal nanoparticles that derived from silver and range between 1 nm and 100 nm in size are called silver nanoparticles (AgNPs). Much advanced research AgNPs has been conducted due to their potential antibacterial and anticancer activity, chemical stability, and ease of synthesis. The purpose of the present study was to explore the physicochemical properties of honey and the potential to use forest honey to synthesize AgNPs as well as to appraise the nanoparticles' antimicrobial and anticancer effects. Here, we used three different percentages of forest honey (20%, 40%, and 80%) as biogenic mediators to synthesize AgNPs at room temperature. The development of AgNPs was confirmed by color change (to the naked eye) and ultraviolet-visible spectroscopy studies, respectively. The absorbance peak obtained between 464 to 4720 nm validated both the surface plasmon resonance (SPR) band and the formation of AgNPs. Regarding the sugar profile, the contents of maltose and glucose were lower than the content of fructose. In addition, the results showed that the SPR band of AgNPs increased as the percentage of forest honey increased due to the elevation of the concentration of the bio-reducing agent. A bacterial growth kinetic assay indicated the strong antibacterial efficacy of honey with silver nanoparticles against each tested bacterial strain. Honey with nanotherapy was the most effective against hepatocellular carcinoma (HepG2) and colon cancer (HCT 116) cells, with IC50s of 23.9 and 27.4 µg/mL, respectively, while being less effective against breast adenocarcinoma cells (MCF-7), with an IC50 of 32.5 µg/mL.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Animais , Prata/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Células HCT116 , Extratos Vegetais/química
20.
Chemosphere ; 336: 139215, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37336444

RESUMO

Clethodim is a widely used and approved class II herbicide, with little information about its impact on the reproductive system. Herein, we investigated the male reproductive toxicity of clethodim using a mouse model. GrassOut Max (26% clethodim-equivalent) or analytical grade clethodim (≥90%) were given orally to male mice for 10 d in varying doses. All parameters were assessed at 35 d post-treatment. Significant decrease in testicular weight, decreased germ cell population, elevated DNA damage in testicular cells and lower serum testosterone level was observed post clethodim based herbicide exposure. Epididymal spermatozoa were characterized with significant decrease in motility, elevated DNA damage, abnormal morphology, chromatin immaturity and, decreased acetylated-lysine of sperm proteins. In the testicular cells of clethodim-based herbicide treated mice, the expression of Erß and Gper was significantly higher. Proteomic analysis revealed lower metabolic activity, poor sperm-oocyte binding potential and defective mitochondrial electron transport in spermatozoa of clethodim-based herbicide treated mice. Further, fertilizing ability of spermatozoa was compromised and resulted in defective preimplantation embryo development. Together, our data suggest that clethodim exposure risks male reproductive function and early embryogenesis in Swiss albino mice via endocrine disrupting function.


Assuntos
Herbicidas , Gravidez , Animais , Feminino , Camundongos , Masculino , Herbicidas/toxicidade , Herbicidas/metabolismo , Proteômica , Sêmen , Testículo/metabolismo , Espermatozoides/metabolismo , Desenvolvimento Embrionário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA