Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 22(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38248659

RESUMO

The Marburg virus (MBV), a deadly pathogen, poses a serious threat to world health due to the lack of effective treatments, calling for an immediate search for targeted and efficient treatments. In this study, we focused on compounds originating from marine fungi in order to identify possible inhibitory compounds against the Marburg virus (MBV) VP35-RNA binding domain (VP35-RBD) using a computational approach. We started with a virtual screening procedure using the Lipinski filter as a guide. Based on their docking scores, 42 potential candidates were found. Four of these compounds-CMNPD17596, CMNPD22144, CMNPD25994, and CMNPD17598-as well as myricetin, the control compound, were chosen for re-docking analysis. Re-docking revealed that these particular compounds had a higher affinity for MBV VP35-RBD in comparison to the control. Analyzing the chemical interactions revealed unique binding properties for every compound, identified by a range of Pi-cation interactions and hydrogen bond types. We were able to learn more about the dynamic behaviors and stability of the protein-ligand complexes through a 200-nanosecond molecular dynamics simulation, as demonstrated by the compounds' consistent RMSD and RMSF values. The multidimensional nature of the data was clarified by the application of principal component analysis, which suggested stable conformations in the complexes with little modification. Further insight into the energy profiles and stability states of these complexes was also obtained by an examination of the free energy landscape. Our findings underscore the effectiveness of computational strategies in identifying and analyzing potential inhibitors for MBV VP35-RBD, offering promising paths for further experimental investigations and possible therapeutic development against the MBV.


Assuntos
Doença do Vírus de Marburg , Animais , Motivos de Ligação ao RNA , Fungos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular
2.
Saudi Pharm J ; 32(1): 101914, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38111672

RESUMO

SARS-CoV-2 is accountable for severe social and economic disruption around the world causing COVID-19. Non-structural protein-15 (NSP15) possesses a domain that is vital to the viral life cycle and is known as uridylate-specific endoribonuclease (EndoU). This domain binds to the uridine 5'-monophosphate (U5P) so that the protein may carry out its native activity. It is considered a vital drug target to inhibit the growth of the virus. Thus, in this current study, ML-based QSAR and virtual screening of U5P analogues targeting Nsp15 were performed to identify potential molecules against SARS-CoV-2. Screening of 816 unique U5P analogues using ML-based QSAR identified 397 compounds ranked on their predicted bioactivity (pIC50). Further, molecular docking and hydrogen bond interaction analysis resulted in the selection of the top three compounds (53309102, 57398422, and 76314921). Molecular dynamics simulation of the most promising compounds showed that two molecules 53309102 and 57398422 acted as potential binders of Nsp15. The compound was able to inhibit nsp15 activity as it was successfully bound to the active site of the nsp15 protein. This was achieved by the formation of relevant contacts with enzymatically critical amino acid residues (His235, His250, and Lys290). Principal component analysis and free energy landscape studies showed stable complex formation while MM/GBSA calculation showed lower binding energies for 53309102 (ΔGTOTAL = -29.4 kcal/mol) and 57398422 (ΔGTOTAL = -39.4 kcal/mol) compared to the control U5P (ΔGTOTAL = -18.8 kcal/mol). This study aimed to identify analogues of U5P inhibiting the NSP15 function that potentially could be used for treating COVID-19.

3.
Cell Mol Biol (Noisy-le-grand) ; 69(5): 6-11, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571908

RESUMO

Multidrug-resistant (MDR) bacteria are one of the major public health threats facing humanity. Infections with MDR strains are difficult or impossible to treat with standard antibiotics leading to severe illnesses and even deaths. The spread of MDR bacteria has necessitated the search for alternative approaches that tackle MDR pathogens. Natural plants can be utilized as alternative therapeutic agents against the rise of MDR bacteria. In this study, we aimed to assess the antimicrobial activity of pomegranate peel extracts (PPE) against MDR clinical isolates. A total of 9 clinical isolates (8 MDR and 1 non-MDR clinical isolates) were collected and examined for their susceptibility to PPE. Using the zone of inhibition assay, 4 isolates (S. aureus, three MRSA isolates, Vancomycin-resistant Enterococci (VRE), and Acinetobacter baumannii) were sensitive to PPE. In Broth assay, 4 mg/ml PPE significantly reduced the growth (S. aureus, three MRSA isolates, Vancomycin-resistant Enterococci (VRE), and Acinetobacter baumannii), while 40 mg/ml PPE either significantly reduced or completely inhibited the growth of the isolates. The minimum bactericidal concentration (MBC) of PPE against S. aureus and MRSA-88 was 10 mg/ml. This study showed the potential of PPE as an alternative compound for treating infections caused by PPE-sensitive MDR bacteria.


Assuntos
Punica granatum , Staphylococcus aureus , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
4.
J Enzyme Inhib Med Chem ; 38(1): 2203879, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37080777

RESUMO

A novel series of multifunctional pyrazolo[3,4-d]pyrimidine-based glutamate analogs (6a-l and 7a,b) have been designed and synthesized as antifolate anticancer agents. Among the tested compounds, 6i exhibited the most potent anti-proliferative activity towards NSCLC, CNS, Ovarian, Prostate, Colon, Melanoma, Breast, and Renal cancers with good to weak cytostatic activity and non-lethal actions. 6i demonstrated higher selectivity for cancer than normal cells. 6i could significantly increase the accumulation of S-phase cells during the cell cycle distribution of cancer cells with high potency in the induction of apoptosis. The results unveiled that 6i probably acts through dual inhibition of DHFR and TS enzymes (IC50 = 2.41 and 8.88 µM, correspondingly). Docking studies of 6i displayed that N1-p-bromophenyl and C3-Methyl groups participate in substantial hydrophobic interactions. The drug-likeness features inferred that 6i met the acceptance criteria of Pfizer. Taking together, 6i could be a promising prototype for further optimization as an effective anticancer drug.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Neoplasias , Humanos , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Pirimidinas/química , Antineoplásicos/química , Estrutura Molecular , Proliferação de Células , Desenho de Fármacos
5.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674702

RESUMO

Although people with human leukocyte antigens (HLA) DQ2 and/or DQ8 are more likely to develop celiac disease (CD), the condition cannot be fully explained by this genetic predisposition alone. Multiple, as yet unidentified, factors contribute to the genesis of CD, including genetics, the environment, and the immune system. In order to provide insight into a prospective possibility and an expanded screening technique, we aim to undertake a comprehensive and meta-analytical study of the assessment and distribution of HLA class II (HLA-DQ2/DQ8) in adult CD patients. A systematic review was conducted using an electronic search of databases (PubMed, Google Scholar, Embase, and Direct Science) from January 2004 to February 2022. DQ2/DQ2 homozygotes have the highest risk of developing CD. DQ2/DQ8 typing is an effective test to exclude CD from the differential diagnosis of a patient with CD symptoms. Although other non-HLA genes have been associated with CD, they are rarely considered at diagnosis because they account for only a small proportion of the heritability of CD. This finding, together with the information gathered previously, may be useful in considering widely available and economically feasible screening options for celiac disease in young people.


Assuntos
Doença Celíaca , Humanos , Adulto , Adolescente , Doença Celíaca/diagnóstico , Estudos Prospectivos , Predisposição Genética para Doença
6.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446713

RESUMO

The RAS gene family is one of the most frequently mutated oncogenes in human cancers. In KRAS, mutations of G12D and G12C are common. Here, 52 iridoids were selected and docked against 8AFB (KRAS G12C receptor) using Sotorasib as the standard. As per the docking interaction data, 6-O-trans-p-coumaroyl-8-O-acetylshanzhiside methyl ester (dock score: -9.9 kcal/mol), 6'-O-trans-para-coumaroyl geniposidic acid (dock score: -9.6 kcal/mol), 6-O-trans-cinnamoyl-secologanoside (dock score: -9.5 kcal/mol), Loganic acid 6'-O-beta-d-glucoside (dock score: -9.5 kcal/mol), 10-O-succinoylgeniposide (dock score: -9.4), Loganic acid (dock score: -9.4 kcal/mol), and Amphicoside (dock score: -9.2 kcal/mol) showed higher dock scores than standard Sotorasib (dock score: -9.1 kcal/mol). These common amino acid residues between iridoids and complexed ligands confirmed that all the iridoids perfectly docked within the receptor's active site. The 100 ns MD simulation data showed that RMSD, RMSF, radius of gyration, and SASA values were within range, with greater numbers of hydrogen bond donors and acceptors. MM/PBSA analysis showed maximum binding energy values of -7309 kJ/mol for 6-O-trans-p-coumaroyl-8-O-acetylshanzhiside methyl ester. FMO analysis showed that 6-O-trans-p-coumaroyl-8-O-acetylshanzhiside methyl ester was the most likely chemically reactive molecule. MEP analysis data highlighted the possible electrophilic and nucleophilic attack regions of the best-docked iridoids. Of all the best-docked iridoids, Loganic acid passed Lipinski, Pfizer, and GSK filters with a similar toxicity profile to Sotorasib. Thus, if we consider these iridoids to be KRAS G12C inhibitors, they will be a boon to mankind.


Assuntos
Genes ras , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas p21(ras)/genética , Eletricidade Estática , Simulação de Dinâmica Molecular , Iridoides/farmacologia , Iridoides/química , Ésteres
7.
Molecules ; 28(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677672

RESUMO

This study aimed to determine the chemical composition of the essential oils (EOs) of Ocimum basilicum L., as well as to evaluate the antibacterial, antidiabetic, dermatoprotective, and anti-inflammatory properties, and the EOs and aqueous extracts of O. basilicum. The antibacterial activity was evaluated against bacterial strains, Gram-positive and Gram-negative, using the well diffusion and microdilution methods, whereas the antidiabetic activity was assessed in vitro using two enzymes involved in carbohydrate digestion, α-amylase and α-glucosidase. On the other hand, the dermatoprotective and anti-inflammatory activities were studied by testing tyrosinase and lipoxygenase inhibition activity, respectively. The results showed that the chemical composition of O. basilicum EO (OBEO) is dominated by methyl chavicol (86%) and trans-anethol (8%). OBEO exhibited significant antibacterial effects against Gram-negative and Gram-positive strains, demonstrated by considerable diameters of the inhibition zones and lower MIC and MBC values. In addition, OBEO exhibited significant inhibition of α-amylase (IC50 = 50.51 ± 0.32 µg/mL) and α-glucosidase (IC50 = 39.84 ± 1.2 µg/mL). Concerning the anti-inflammatory activity, OBEO significantly inhibited lipoxygenase activity (IC50 = 18.28 ± 0.03 µg/mL) compared to the aqueous extract (IC50 = 24.8 ± 0.01 µg/mL). Moreover, tyrosinase was considerably inhibited by OBEO (IC50 = 68.58 ± 0.03 µg/mL) compared to the aqueous extract (IC50 = 118.37 ± 0.05 µg/mL). The toxicological investigations revealed the safety of O. basilicum in acute and chronic toxicity. The finding of in silico analysis showed that methyl chavicol and trans-anethole (main compounds of OBEO) validate the pharmacokinetics of these compounds and decipher some antibacterial targets.


Assuntos
Ocimum basilicum , Óleos Voláteis , Ocimum basilicum/química , Monofenol Mono-Oxigenase , alfa-Glucosidases , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Lipoxigenases
8.
Molecules ; 27(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35807371

RESUMO

One-step direct unimolar valeroylation of methyl α-D-galactopyranoside (MDG) mainly furnished the corresponding 6-O-valeroate. However, DMAP catalyzed a similar reaction that produced 2,6-di-O-valeroate and 6-O-valeroate, with the reactivity sequence as 6-OH > 2-OH > 3-OH,4-OH. To obtain novel antimicrobial agents, 6-O- and 2,6-di-O-valeroate were converted into several 2,3,4-tri-O- and 3,4-di-O-acyl esters, respectively, with other acylating agents in good yields. The PASS activity spectra along with in vitro antimicrobial evaluation clearly indicated that these MDG esters had better antifungal activities than antibacterial agents. To rationalize higher antifungal potentiality, molecular docking was conducted with sterol 14α-demethylase (PDB ID: 4UYL, Aspergillus fumigatus), which clearly supported the in vitro antifungal results. In particular, MDG ester 7−12 showed higher binding energy than the antifungal drug, fluconazole. Additionally, these compounds were found to have more promising binding energy with the SARS-CoV-2 main protease (6LU7) than tetracycline, fluconazole, and native inhibitor N3. Detailed investigation of Ki values, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and the drug-likeness profile indicated that most of these compounds satisfy the drug-likeness evaluation, bioavailability, and safety tests, and hence, these synthetic novel MDG esters could be new antifungal and antiviral drugs.


Assuntos
Anti-Infecciosos , COVID-19 , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Ésteres/química , Fluconazol , Galactose , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2
9.
Molecules ; 27(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36431782

RESUMO

The present study investigated and compared the quality and chemical composition of Moroccan walnut (Juglans regia L.) oil. This study used three extraction techniques: cold pressing (CP), soxhlet extraction (SE), and ultrasonic extraction (UE). The findings showed that soxhlet extraction gave a significantly higher oil yield compared to the other techniques used in this work (65.10% with p < 0.05), while cold pressing and ultrasonic extraction gave similar yields: 54.51% and 56.66%, respectively (p > 0.05). Chemical composition analysis was carried out by GC−MS and allowed 11 compounds to be identified, of which the major compound was linoleic acid (C18:2), with a similar percentage (between 57.08% and 57.84%) for the three extractions (p > 0.05). Regarding the carotenoid pigment, the extraction technique significantly affected its content (p < 0.05) with values between 10.11 mg/kg and 14.83 mg/kg. The chlorophyll pigment presented a similar content in both oils extracted by SE and UE (p > 0.05), 0.20 mg/kg and 0.16 mg/kg, respectively, while the lowest content was recorded in the cold-pressed oil with 0.13 mg/kg. Moreover, the analysis of phytosterols in walnut oil revealed significantly different contents (p < 0.05) for the three extraction techniques (between 1168.55 mg/kg and 1306.03 mg/kg). In addition, the analyses of tocopherol composition revealed that γ-tocopherol represented the main tocopherol isomer in all studied oils and the CP technique provided the highest content of total tocopherol with 857.65 mg/kg, followed by SE and UE with contents of 454.97 mg/kg and 146.31 mg/kg, respectively, which were significantly different (p < 0.05). This study presents essential information for producers of nutritional oils and, in particular, walnut oil; this information helps to select the appropriate method to produce walnut oil with the targeted quality properties and chemical compositions for the desired purpose. It also helps to form a scientific basis for further research on this plant in order to provide a vision for the possibility of exploiting these oils in the pharmaceutical, cosmetic, and food fields.


Assuntos
Juglans , Juglans/química , Óleos de Plantas/química , Ácidos Graxos/análise , Nozes/química , Tocoferóis/análise
10.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431794

RESUMO

Walnut oil, like all vegetable oils, is chemically unstable because of the sensitivity of its unsaturated fatty acids to the oxidation phenomenon. This phenomenon is based on a succession of chemical reactions, under the influence of temperature or storage conditions, that always lead to a considerable change in the quality of the oil by promoting the oxidation of unsaturated fatty acids through the degradation of their C-C double bonds, leading to the formation of secondary oxidation products that reduce the nutritional values of the oil. This research examines the oxidative stability of roasted and unroasted cold-pressed walnut oils under accelerated storage conditions. The oxidative stability of both oils was evaluated using physicochemical parameters: chemical composition (fatty acids, phytosterols, and tocopherols), pigment content (chlorophyll and carotenoids), specific extinction coefficients (K232 and K270), and quality indicators (acid and peroxide value) as well as the evaluation of radical scavenging activity by the DPPH method. The changes in these parameters were evaluated within 60 days at 60 ± 2 °C. The results showed that the levels of total phytosterols, the parameters of the acid and peroxide value, K232 and K270, increased slightly for both oils as well as the total tocopherol content and the antioxidant activity affected by the roasting process. In contrast, the fatty acid profiles did not change considerably during the 60 days of our study. After two months of oil treatment at 60 °C, the studied oils still showed an excellent physicochemical profile, which allows us to conclude that these oils are stable and can withstand such conditions. This may be due to the considerable content of tocopherols (vitamin E), which acts as an antioxidant.


Assuntos
Juglans , Fitosteróis , Juglans/química , Antioxidantes/química , Tocoferóis , Óleos de Plantas/química , Ácidos Graxos/química , Vitamina E , Ácidos Graxos Insaturados , Peróxidos , Estresse Oxidativo
11.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431807

RESUMO

This study aimed to evaluate the effects of peanut varieties cultivated in Morocco (Virginia and Valencia) and extraction methods (cold press, CP; Soxhlet, Sox and maceration, and Mac) on the fatty acid profile, phytosterol, and tocopherol contents, quality characteristics, and antioxidant potential of peanut seed oil. The DPPH method was used to determine the antioxidant activity of the oils. The results revealed that fatty acid content was slightly affected by the extraction technique. However, the CP method was shown to be an excellent approach for extracting oil with desirable quality features compared to the Sox and Mac methods. Furthermore, the peanut oil extracted via CP carried a higher amount of bioactive compounds and exhibited remarkable antioxidant activities. The findings also revealed higher oleic acid levels from the Virginia oil, ranging from 56.46% to 56.99%. Besides, a higher total phytosterol and tocopherol content and DPPH scavenging capacity were obtained from the Valencia oil. Analyzing the study, it can be inferred that extraction method and variety both affect the composition of the peanut oil's bioactive compounds and antioxidant activity. This information is relevant for extracting peanut oil with a greater level of compounds of industrial interest.


Assuntos
Antioxidantes , Fitosteróis , Óleo de Amendoim/química , Antioxidantes/farmacologia , Antioxidantes/análise , Óleos de Plantas/química , Virginia , Tocoferóis/análise , Ácidos Graxos/química , Vitamina E/análise , Valor Nutritivo , Fitosteróis/análise , Arachis
12.
Molecules ; 27(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889399

RESUMO

Piper betle L. is widely distributed and commonly used medicinally important herb. It can also be used as a medication for type 2 diabetes patients. In this study, compounds of P. betle were screened to investigate the inhibitory action of alpha-amylase and alpha-glucosidase against type 2 diabetes through molecular docking, molecular dynamics simulation, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis. The molecule apigenin-7-O-glucoside showed the highest binding affinity among 123 (one hundred twenty-three) tested compounds. This compound simultaneously bound with the two-target proteins alpha-amylase and alpha-glucosidase, with high molecular mechanics-generalized born surface area (MM/GBSA) values (ΔG Bind = -45.02 kcal mol-1 for alpha-amylase and -38.288 for alpha-glucosidase) compared with control inhibitor acarbose, which had binding affinities of -36.796 kcal mol-1 for alpha-amylase and -29.622 kcal mol-1 for alpha-glucosidase. The apigenin-7-O-glucoside was revealed to be the most stable molecule with the highest binding free energy through molecular dynamics simulation, indicating that it could compete with the inhibitors' native ligand. Based on ADMET analysis, this phytochemical exhibited a wide range of physicochemical, pharmacokinetic, and drug-like qualities and had no significant side effects, making them prospective drug candidates for type 2 diabetes. Additional in vitro, in vivo, and clinical investigations are needed to determine the precise efficacy of drugs.


Assuntos
Diabetes Mellitus Tipo 2 , Piper betle , Apigenina/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucosídeos , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
13.
Molecules ; 27(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268740

RESUMO

Among the various types of cancer, lung cancer is the second most-diagnosed cancer worldwide. The kinesin spindle protein, Eg5, is a vital protein behind bipolar mitotic spindle establishment and maintenance during mitosis. Eg5 has been reported to contribute to cancer cell migration and angiogenesis impairment and has no role in resting, non-dividing cells. Thus, it could be considered as a vital target against several cancers, such as renal cancer, lung cancer, urothelial carcinoma, prostate cancer, squamous cell carcinoma, etc. In recent years, fungal secondary metabolites from the Indian Himalayan Region (IHR) have been identified as an important lead source in the drug development pipeline. Therefore, the present study aims to identify potential mycotic secondary metabolites against the Eg5 protein by applying integrated machine learning, chemoinformatics based in silico-screening methods and molecular dynamic simulation targeting lung cancer. Initially, a library of 1830 mycotic secondary metabolites was screened by a predictive machine-learning model developed based on the random forest algorithm with high sensitivity (1) and an ROC area of 0.99. Further, 319 out of 1830 compounds screened with active potential by the model were evaluated for their drug-likeness properties by applying four filters simultaneously, viz., Lipinski's rule, CMC-50 like rule, Veber rule, and Ghose filter. A total of 13 compounds passed from all the above filters were considered for molecular docking, functional group analysis, and cell line cytotoxicity prediction. Finally, four hit mycotic secondary metabolites found in fungi from the IHR were screened viz., (-)-Cochlactone-A, Phelligridin C, Sterenin E, and Cyathusal A. All compounds have efficient binding potential with Eg5, containing functional groups like aromatic rings, rings, carboxylic acid esters, and carbonyl and with cell line cytotoxicity against lung cancer cell lines, namely, MCF-7, NCI-H226, NCI-H522, A549, and NCI H187. Further, the molecular dynamics simulation study confirms the docked complex rigidity and stability by exploring root mean square deviations, root mean square fluctuations, and radius of gyration analysis from 100 ns simulation trajectories. The screened compounds could be used further to develop effective drugs against lung and other types of cancer.


Assuntos
Simulação de Acoplamento Molecular
14.
Molecules ; 27(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014359

RESUMO

Eucalyptus globulus is a plant widely used by the world population, including Morocco, in the treatment of several pathologies. The aim of this work is to evaluate the antioxidant, anti-inflammatory, dermatoprotective, and antimicrobial effects of essential oil and honey from E. globulus, as well as their combination. Chemical composition was determined by GC-MS analysis. The antioxidant activity was evaluated by three tests, namely, DPPH, reducing power, and the ß-carotene/linoleic acid assay. The anti-inflammatory activity was investigated in vitro (5-lipoxygenase inhibition) and in vivo (carrageenan-induced paw edema model), while the dermatoprotective activity was tested in vitro (tyrosinase inhibition). Moreover, the antibacterial activity was assessed using agar well diffusion and microdilution methods. The results showed that eucalyptol presents the main compound of the essential oil of E. globulus (90.14%). The mixture of essential oil with honey showed the best antioxidant effects for all the tests used (0.07 < IC50 < 0.19 mg/mL), while the essential oil was the most active against tyrosinase (IC50 = 38.21 ± 0.13 µg/mL) and 5-lipoxygenase (IC50 = 0.88 ± 0.01 µg/mL), which corroborated the in vivo test. Additionally, the essential oil showed the best bactericidal effects against all strains tested, with inhibition diameter values ranging from 12.8 to 21.6 mm. The findings of this work showed that the combination of the essential oil with honey showed important results in terms of biological activity, but the determination of the underlying mechanisms of action remains a major prospect to be determined.


Assuntos
Anti-Infecciosos , Eucalyptus , Mel , Óleos Voláteis , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Araquidonato 5-Lipoxigenase , Eucalyptus/química , Testes de Sensibilidade Microbiana , Monofenol Mono-Oxigenase , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Extratos Vegetais/química
15.
Molecules ; 27(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36364152

RESUMO

The purposes of this investigatory study were to determine the chemical composition of the essential oils (EOs) of Origanum compactum from two Moroccan regions (Boulemane and Taounate), as well as the evaluation of their biological effects. Determining EOs' chemical composition was performed by a gas chromatography-mass spectrophotometer (GC-MS). The antioxidant activity of EOs was evaluated using free radical scavenging ability (DPPH method), fluorescence recovery after photobleaching (FRAP), and lipid peroxidation inhibition assays. The anti-inflammatory effect was assessed in vitro using the 5-lipoxygenase (5-LOX) inhibition test and in vivo using the carrageenan-induced paw edema model. Finally, the antibacterial effect was evaluated against several strains using the disk-diffusion assay and the micro-dilution method. The chemical constituent of O. compactum EO (OCEO) from the Boulemane zone is dominated by carvacrol (45.80%), thymol (18.86%), and α-pinene (13.43%). However, OCEO from the Taounate zone is rich in 3-carene (19.56%), thymol (12.98%), and o-cymene (11.16%). OCEO from Taounate showed higher antioxidant activity than EO from Boulemane. Nevertheless, EO from Boulemane considerably inhibited 5-LOX (IC50 = 0.68 ± 0.02 µg/mL) compared to EO from Taounate (IC50 = 1.33 ± 0.01 µg/mL). A similar result was obtained for tyrosinase inhibition with Boulemane EO and Taounate EO, which gave IC50s of 27.51 ± 0.03 µg/mL and 41.83 ± 0.01 µg/mL, respectively. The in vivo anti-inflammatory test showed promising effects; both EOs inhibit and reduce inflammation in mice. For antibacterial activity, both EOs were found to be significantly active against all strains tested in the disk-diffusion test, but O. compactum EO from the Boulemane region showed the highest activity. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for O. compactum EO from the Boulemane region ranged from 0.06 to 0.25% (v/v) and from 0.15 to 0.21% (v/v) for O. compactum from the Taounate region. The MBC/MIC index revealed that both EOs exhibited remarkable bactericidal effects.


Assuntos
Óleos Voláteis , Origanum , Camundongos , Animais , Origanum/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antioxidantes/farmacologia , Antioxidantes/química , Timol , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Inflamatórios/farmacologia
16.
Molecules ; 27(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558122

RESUMO

Leaves, husk, kernels, and bark methanolic extracts of Juglans regia L. were tested for their in vitro antidiabetic, anti-inflammatory, and antioxidant activities. For these purposes, α-amylase and α-glucosidase were used as the main enzymes to evaluate antidiabetic activities. Moreover, lipoxidase and tyrosinase activities were tested to estimate anti-inflammatory properties. Antioxidant properties of Juglans regia L., extracts were determined using three different assays. Leaves extract has an important radical scavenging activity and a-amylase inhibition. Similarly, husk extracts showed high total phenolic content (306.36 ± 4.74 mg gallic acid equivalent/g dry extract) with an important α-amylase inhibition (IC50 = 75.42 ± 0.99 µg/mL). Kernels exhibit significant tyrosinase (IC50 = 51.38 ± 0.81 µg/mL) correlated with antioxidant activities (p < 0.05). Husk and bark extracts also showed strong anti-lipoxidase activities with IC50 equal to 29.48 ± 0.28 and 28.58 ± 0.35 µg/mL, respectively. HPLC-DAD-ESI-MS/MS analysis highlights the phenolic profile of methanolic extracts of Juglans regia L. plant parts. The identified polyphenols were known for their antioxidant, antidiabetic (dicaffeoyl-quinic acid glycoside in kernels), and anti-inflammatory (3,4-dihydroxybenzoic acid in leaves) activities. Further investigations are needed to determine molecular mechanisms involved in these effects as well as to study the properties of the main identified compounds.


Assuntos
Antioxidantes , Juglans , Antioxidantes/química , Juglans/química , Hipoglicemiantes/química , Espectrometria de Massas em Tandem , Monofenol Mono-Oxigenase , Cromatografia Líquida de Alta Pressão , Casca de Planta/química , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/análise , Fenóis/farmacologia , Fenóis/análise , Folhas de Planta/química , alfa-Amilases
17.
Molecules ; 27(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144586

RESUMO

This exploratory investigation aimed to determine the chemical composition and evaluate some biological properties, such as antioxidant, anti-inflammatory, antidiabetic, and antimicrobial activities, of Matricaria chamomilla L. essential oils (EOs). EOs of M. chamomilla were obtained by hydrodistillation and phytochemical screening was performed by gas chromatography-mass spectrophotometry (GC-MS). The antimicrobial activities were tested against different pathogenic strains of microorganisms by using disc diffusion assay, the minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) methods. The antidiabetic activity was performed in vitro using the enzyme inhibition test. The antioxidant activity of EOs was tested using the free radical scavenging ability (DPPH method), ferrous ion chelating (FIC) ability, and ß-carotene bleaching assay. The anti-inflammatory effects were tested in vivo using the carrageenan-induced paw edema method and in vitro using the inhibition of the lipoxygenase test. The analysis of the phytochemical composition by GC-MS revealed that camphor (16.42%) was the major compound of EOs, followed by 3-carene (9.95%), ß-myrcene (8.01%), and chamazulene (6.54%). MCEO, honey, and their mixture exhibited antioxidant activity against the DPPH assay (IC50 ranging from 533.89 ± 15.05 µg/mL to 1945.38 ± 12.71 µg/mL). The mixture exhibited the best radical scavenging activity, with an IC50 of 533.89 ± 15.05 µg/mL. As antidiabetic effect, EO presented the best values against α-glucosidase (265.57 ± 0.03 µg/mL) and α-amylase (121.44 ± 0.05 µg/mL). The EOs and honey mixture at a dose of 100 mg/kg exhibited a high anti-inflammatory effect, with 63.75% edema inhibition after 3 h. The impact of EOs on the studied species showed an excellent antimicrobial (Staphylococcus aureus ATCC 29213 (22.97 ± 0.16 mm)), antifungal (Aspergillus niger (18.13 ± 0.18 mm)) and anti-yeast (Candida albicans (21.07 ± 0.24 mm) effect against all the tested strains. The results obtained indicate that the EOs of M. chamomilla could be a potential drug target against diabetes, inflammation and microbial infections; however, further investigations to assess their bioactive molecules individually and in combination are greatly required.


Assuntos
Anti-Infecciosos , Mel , Matricaria , Óleos Voláteis , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Cânfora , Carragenina , Radicais Livres , Hipoglicemiantes , Lipoxigenases , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/farmacologia , alfa-Amilases , alfa-Glucosidases , beta Caroteno
18.
Molecules ; 26(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34885792

RESUMO

Glucokinase activators are considered as new therapeutic arsenals that bind to the allosteric activator sites of glucokinase enzymes, thereby maximizing its catalytic rate and increasing its affinity to glucose. This study was designed to identify potent glucokinase activators from prenylated flavonoids isolated from medicinal plants using molecular docking, molecular dynamics simulation, density functional theory, and ADMET analysis. Virtual screening was carried out on glucokinase enzymes using 221 naturally occurring prenylated flavonoids, followed by molecular dynamics simulation (100 ns), density functional theory (B3LYP model), and ADMET (admeSar 2 online server) studies. The result obtained from the virtual screening with the glucokinase revealed arcommunol B (-10.1 kcal/mol), kuwanon S (-9.6 kcal/mol), manuifolin H (-9.5 kcal/mol), and kuwanon F (-9.4 kcal/mol) as the top-ranked molecules. Additionally, the molecular dynamics simulation and MM/GBSA calculations showed that the hit molecules were stable at the active site of the glucokinase enzyme. Furthermore, the DFT and ADMET studies revealed the hit molecules as potential glucokinase activators and drug-like candidates. Our findings suggested further evaluation of the top-ranked prenylated flavonoids for their in vitro and in vivo glucokinase activating potentials.


Assuntos
Ativadores de Enzimas/farmacologia , Flavonoides/farmacologia , Glucoquinase/metabolismo , Domínio Catalítico/efeitos dos fármacos , Ativadores de Enzimas/química , Flavonoides/química , Glucoquinase/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
19.
Front Pharmacol ; 15: 1337910, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370475

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent cancer worldwide. Late-stage detection, ineffective treatments, and tumor recurrence contribute to the low survival rate of the HCC. Conventional chemotherapeutic drugs, like doxorubicin (DOX), are associated with severe side effects, limited effectiveness, and tumor resistance. To improve therapeutic outcomes and minimize these drawbacks, combination therapy with natural drugs is being researched. Herein, we assessed the antitumor efficacy of Ceiba pentandra ethyl acetate extract alone and in combination with DOX against diethylnitrosamine (DENA)-induced HCC in rats. Our in vivo study significantly revealed improvement in the liver-function biochemical markers (ALT, AST, GGT, and ALP), the tumor marker (AFP-L3), and the histopathological features of the treated groups. A UHPLC-Q-TOF-MS/MS analysis of the Ceiba pentandra ethyl acetate extract enabled the identification of fifty phytomolecules. Among these are the dietary flavonoids known to have anticancer, anti-inflammatory, and antioxidant qualities: protocatechuic acid, procyanidin B2, epicatechin, rutin, quercitrin, quercetin, kaempferol, naringenin, and apigenin. Our findings highlight C. pentandra as an affordable source of phytochemicals with possible chemosensitizing effects, which could be an intriguing candidate for the development of liver cancer therapy, particularly in combination with chemotherapeutic drugs.

20.
Metabolites ; 13(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677018

RESUMO

Leishmaniasis is a group of infectious diseases caused by Leishmania protozoa. The ineffectiveness, high toxicity, and/or parasite resistance of the currently available antileishmanial drugs has created an urgent need for safe and effective leishmaniasis treatment. Currently, the molecular-docking technique is used to predict the proper conformations of small-molecule ligands and the strength of the contact between a protein and a ligand, and the majority of research for the development of new drugs is centered on this type of prediction. Leishmania N-myristoyltransferase (NMT) has been shown to be a reliable therapeutic target for investigating new anti-leishmanial molecules through this kind of virtual screening. Natural products provide an incredible source of affordable chemical scaffolds that serve in the development of effective drugs. Withania somnifera leaves, roots, and fruits have been shown to contain withanolide and other phytomolecules that are efficient anti-protozoal agents against Malaria, Trypanosoma, and Leishmania spp. Through a review of previously reported compounds from W. somnifera-afforded 35 alkaloid, phenolic, and steroid compounds and 132 withanolides/derivatives, typical of the Withania genus. These compounds were subjected to molecular docking screening and molecular dynamics against L. major NMT. Calycopteretin-3-rutinoside and withanoside IX showed the highest affinity and binding stability to L. major NMT, implying that these compounds could be used as antileishmanial drugs and/or as a scaffold for the design of related parasite NMT inhibitors with markedly enhanced binding affinity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA