Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(2): e2215882120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595666

RESUMO

Holocene climate in the high tropical Andes was characterized by both gradual and abrupt changes, which disrupted the hydrological cycle and impacted landscapes and societies. High-resolution paleoenvironmental records are essential to contextualize archaeological data and to evaluate the sociopolitical response of ancient societies to environmental variability. Middle-to-Late Holocene water levels in Lake Titicaca were reevaluated through a transfer function model based on measurements of organic carbon stable isotopes, combined with high-resolution profiles of other geochemical variables and paleoshoreline indicators. Our reconstruction indicates that following a prolonged low stand during the Middle Holocene (4000 to 2400 BCE), lake level rose rapidly ~15 m by 1800 BCE, and then increased another 3 to 6 m in a series of steps, attaining the highest values after ~1600 CE. The largest lake-level increases coincided with major sociopolitical changes reported by archaeologists. In particular, at the end of the Formative Period (500 CE), a major lake-level rise inundated large shoreline areas and forced populations to migrate to higher elevation, likely contributing to the emergence of the Tiwanaku culture.


Assuntos
Clima , Lagos , Lagos/química , Água
2.
Int J Mol Sci ; 24(16)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37629181

RESUMO

Over the last few years, there has been increasing interest in the use of amorphous carbon thin films with low secondary electron yield (SEY) to mitigate electron multipacting in particle accelerators and RF devices. Previous works found that the SEY increases with the amount of incorporated hydrogen and correlates with the Tauc gap. In this work, we analyse films produced by magnetron sputtering with different contents of hydrogen and deuterium incorporated via the target poisoning and sputtering of CxDy molecules. XPS was implemented to estimate the phase composition of the films. The maximal SEY was found to decrease linearly with the fraction of the graphitic phase in the films. These results are supported by Raman scattering and UPS measurements. The graphitic phase decreases almost linearly for hydrogen and deuterium concentrations between 12% and 46% (at.), but abruptly decreases when the concentration reaches 53%. This vanishing of the graphitic phase is accompanied by a strong increase of SEY and the Tauc gap. These results suggest that the SEY is not dictated directly by the concentration of H/D, but by the fraction of the graphitic phase in the film. The results are supported by an original model used to calculate the SEY of films consisting of a mixture of graphitic and polymeric phases.


Assuntos
Elétrons , Grafite , Deutério , Filmes Cinematográficos , Hidrogênio , Fuligem
3.
Environ Microbiol ; 24(3): 1430-1453, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34995419

RESUMO

Due to an increasing demand for sustainable agricultural practices, the adoption of microbial volatile organic compounds (VOCs) as antagonists against phytopathogens has emerged as an eco-friendly alternative to the use of agrochemicals. Here, we identified three Pseudomonas strains that were able to inhibit, in vitro, up to 80% of mycelial growth of the phytopathogenic fungus Thielaviopsis ethacetica, the causal agent of pineapple sett rot disease in sugarcane. Using GC/MS, we found that these bacteria produced 62 different VOCs, and further functional validation revealed compounds with high antagonistic activity to T. ethacetica. Transcriptomic analysis of the fungal response to VOCs indicated that these metabolites downregulated genes related to fungal central metabolism, such as those involved in carbohydrate metabolism. Interestingly, genes related to the DNA damage response were upregulated, and micro-FTIR analysis corroborated our hypothesis that VOCs triggered DNA damage. Electron microscopy analysis showed critical morphological changes in mycelia treated with VOCs. Altogether, these results indicated that VOCs hampered fungal growth and could lead to cell death. This study represents the first demonstration of the molecular mechanisms involved in the antagonism of sugarcane phytopathogens by VOCs and reinforces that VOCs can be a sustainable alternative for use in phytopathogen biocontrol.


Assuntos
Ascomicetos , Saccharum , Compostos Orgânicos Voláteis , Ascomicetos/metabolismo , Bactérias/metabolismo , Dano ao DNA , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia
4.
Small ; 18(49): e2102235, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36310127

RESUMO

The widespread adoption of gGaN in radiation-hard semiconductor devices relies on a comprehensive understanding of its response to strongly ionizing radiation. Despite being widely acclaimed for its high radiation resistance, the exact effects induced by ionization are still hard to predict due to the complex phase-transition diagrams and defect creation-annihilation dynamics associated with group-III nitrides. Here, the Two-Temperature Model, Molecular Dynamics simulations and Transmission Electron Microscopy, are employed to study the interaction of Swift Heavy Ions with GaN at the atomic level. The simulations reveal a high propensity of GaN to recrystallize the region melted by the impinging ion leading to high thresholds for permanent track formation. Although the effect exists in all studied electronic energy loss regimes, its efficiency is reduced with increasing electronic energy loss, in particular when there is dissociation of the material and subsequent formation of N2 bubbles. The recrystallization is also hampered near the surface where voids and pits are prominent. The exceptional agreement between the simulated and experimental results establishes the applicability of the model to examine the entire electronic energy loss spectrum. Furthermore, the model supports an empirical relation between the interaction cross sections (namely for melting and amorphization) and the electronic energy loss.


Assuntos
Eletrônica
5.
Phys Chem Chem Phys ; 24(42): 25773-25787, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36263762

RESUMO

350 nm and 550 nm thick InGaN/GaN bilayers were irradiated with different energies (from ∼82 to ∼38 MeV) of xenon (129Xe) ions and different fluences of 1.2 GeV lead (208Pb) ions, respectively. The radiation effects of the swift heavy ions' (SHIs) bombardment were investigated using Rutherford Backscattering Spectrometry in Channeling mode (RBS/C), X-Ray Diffraction (XRD), and micro-Raman spectroscopy. To assess damage profiles, the RBS/C analysis was followed by Monte Carlo simulations using the McChasy code, revealing that InGaN is more susceptible to irradiation damage than GaN. Moreover, the simulations suggest that both randomly displaced atoms (possibly due to partial amorphization) and dislocation loops are formed. The elastic response to radiation was estimated by measuring the expansion of the c-lattice parameter. XRD revealed the presence of strain even in low fluence samples where only a small fraction of the sample volume suffered direct SHI impacts. Micro-Raman suggests that for low defect concentrations, it is dominantly biaxial, while for high defect concentrations, the simultaneous increase of hydrostatic and biaxial occurs. As a driving force of the lattice expansion, we point out the Poisson effect resulting from the pressure exerted by the SHI tracks on the surrounding undamaged crystal structure.

6.
Sensors (Basel) ; 22(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36146392

RESUMO

In this study, thin films composed of gold nanoparticles embedded in a copper oxide matrix (Au:CuO), manifesting Localized Surface Plasmon Resonance (LSPR) behavior, were produced by reactive DC magnetron sputtering and post-deposition in-air annealing. The effect of low-power Ar plasma etching on the surface properties of the plasmonic thin films was studied, envisaging its optimization as gas sensors. Thus, this work pretends to attain the maximum sensing response of the thin film system and to demonstrate its potential as a gas sensor. The results show that as Ar plasma treatment time increases, the host CuO matrix is etched while Au nanoparticles are uncovered, which leads to an enhancement of the sensitivity until a certain limit. Above such a time limit for plasma treatment, the CuO bonds are broken, and oxygen is removed from the film's surface, resulting in a decrease in the gas sensing capabilities. Hence, the importance of the host matrix for the design of the LSPR sensor is also demonstrated. CuO not only provides stability and protection to the Au NPs but also promotes interactions between the thin film's surface and the tested gases, thereby improving the nanocomposite film's sensitivity. The optimized sensor sensitivity was estimated at 849 nm/RIU, which demonstrates that the Au-CuO thin films have the potential to be used as an LSPR platform for gas sensors.

7.
Sensors (Basel) ; 21(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34884159

RESUMO

In a new era for digital health, dry electrodes for biopotential measurement enable the monitoring of essential vital functions outside of specialized healthcare centers. In this paper, a new type of nanostructured titanium-based thin film is proposed, revealing improved biopotential sensing performance and overcoming several of the limitations of conventional gel-based electrodes such as reusability, durability, biocompatibility, and comfort. The thin films were deposited on stainless steel (SS) discs and polyurethane (PU) substrates to be used as dry electrodes, for non-invasive monitoring of body surface biopotentials. Four different Ti-Me (Me = Al, Cu, Ag, or Au) metallic binary systems were prepared by magnetron sputtering. The morphology of the resulting Ti-Me systems was found to be dependent on the chemical composition of the films, specifically on the type and amount of Me. The existence of crystalline intermetallic phases or glassy amorphous structures also revealed a strong influence on the morphological features developed by the different systems. The electrodes were tested in an in-vivo study on 20 volunteers during sports activity, allowing study of the application-specific characteristics of the dry electrodes, based on Ti-Me intermetallic thin films, and evaluation of the impact of the electrode-skin impedance on biopotential sensing. The electrode-skin impedance results support the reusability and the high degree of reliability of the Ti-Me dry electrodes. The Ti-Al films revealed the least performance as biopotential electrodes, while the Ti-Au system provided excellent results very close to the Ag/AgCl reference electrodes.


Assuntos
Nanoestruturas , Titânio , Impedância Elétrica , Eletrodos , Humanos , Reprodutibilidade dos Testes
8.
Microb Pathog ; 140: 103969, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31918000

RESUMO

The consumption of probiotics has increased due to the reported health benefits, mainly in preventing or treating gastrointestinal pathology. This study investigated the antimicrobial capacity of yeasts, Saccharomyces cerevisiae and Pichia kluyveri, previously isolated from fermented foods (indigenous beverage, kefir and cocoa) against the adhesion of foodborne pathogens to Caco-2 cells. Co-aggregation of yeasts with pathogens and were evaluated by quantitative analysis and using scanning electron and laser confocal microscopies. All yeasts strains were able to co-aggregate with the tested pathogens, however, this activity was strain-dependent. The inhibition tests showed that the adhesion of Escherichia coli EPEC, Listeria monocytogenes and Salmonella Enteritidis to Caco-2 was reduced by all the yeasts studied. Most of the evaluated yeasts showed inhibition rates equal to or greater than the commercial probiotic Saccharomyces boulardii. The yeasts were able to reduce up to 50% of the bacterial infection, as observed for CCMA0615 towards EPEC in exclusion assay; CCMA0731, CCMA0732 and CCMA0615 towards L. monocytogenes in exclusion and competition assays; and CCMA0731 in exclusion and CCMA0731, CCMA0732, CCMA0615 in competition assay towards S. Enteritidis. No antimicrobial compounds were produced by the yeasts, showing that competition for nutrients and/or receptors in the intestinal mucosa was the mechanism to bacterial inhibition.


Assuntos
Antibiose , Alimentos Fermentados/microbiologia , Pichia/fisiologia , Saccharomyces cerevisiae/fisiologia , Aderência Bacteriana , Brasil , Células CACO-2 , Escherichia coli/fisiologia , Microbiologia de Alimentos , Humanos , Listeria monocytogenes/fisiologia , Pichia/genética , Pichia/isolamento & purificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Salmonella enteritidis/fisiologia
9.
Molecules ; 25(9)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365664

RESUMO

Porphyrins and analogous macrocycles exhibit interesting photochemical, catalytic, and luminescence properties demonstrating high potential in the treatment of several diseases. Among them can be highlighted the possibility of application in photodynamic therapy and antimicrobial/antiparasitic PDT, for example, of malaria parasite. However, the low efficiency generally associated with their low solubility in water and bioavailability have precluded biomedical applications. Nanotechnology can provide efficient strategies to enhance bioavailability and incorporate targeted delivery properties to conventional pharmaceuticals, enhancing the effectiveness and reducing the toxicity, thus improving the adhesion to the treatment. In this way, those limitations can be overcome by using two main strategies: (1) Incorporation of hydrophilic substituents into the macrocycle ring while controlling the interaction with biological systems and (2) by including them in nanocarriers and delivery nanosystems. This review will focus on antiparasitic drugs based on porphyrin derivatives developed according to these two strategies, considering their vast and increasing applications befitting the multiple roles of these compounds in nature.


Assuntos
Antiparasitários/química , Antiparasitários/farmacologia , Composição de Medicamentos , Porfirinas/química , Porfirinas/farmacologia , Antiparasitários/uso terapêutico , Técnicas Biossensoriais , Humanos , Indóis/química , Indóis/farmacologia , Isoindóis , Estrutura Molecular , Relação Estrutura-Atividade
10.
Dev Biol ; 434(1): 108-120, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29229250

RESUMO

The transcription factors GATA4, GATA5 and GATA6 are important regulators of heart muscle differentiation (cardiomyogenesis), which function in a partially redundant manner. We identified genes specifically regulated by individual cardiogenic GATA factors in a genome-wide transcriptomics analysis. The genes regulated by gata4 are particularly interesting because GATA4 is able to induce differentiation of beating cardiomyocytes in Xenopus and in mammalian systems. Among the specifically gata4-regulated transcripts we identified two SoxF family members, sox7 and sox18. Experimental reinstatement of gata4 restores sox7 and sox18 expression, and loss of cardiomyocyte differentiation due to gata4 knockdown is partially restored by reinstating sox7 or sox18 expression, while (as previously reported) knockdown of sox7 or sox18 interferes with heart muscle formation. In order to test for conservation in mammalian cardiomyogenesis, we confirmed in mouse embryonic stem cells (ESCs) undergoing cardiomyogenesis that knockdown of Gata4 leads to reduced Sox7 (and Sox18) expression and that Gata4 is also uniquely capable of promptly inducing Sox7 expression. Taken together, we identify an important and conserved gene regulatory axis from gata4 to the SoxF paralogs sox7 and sox18 and further to heart muscle cell differentiation.


Assuntos
Fator de Transcrição GATA4/metabolismo , Coração/embriologia , Miócitos Cardíacos/metabolismo , Organogênese/fisiologia , Fatores de Transcrição SOXF/biossíntese , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/metabolismo , Animais , Fator de Transcrição GATA4/genética , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/citologia , Fatores de Transcrição SOXF/genética , Proteínas de Xenopus/genética , Xenopus laevis
11.
Development ; 143(11): 1914-25, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27068107

RESUMO

Key signalling pathways, such as canonical Wnt/ß-catenin signalling, operate repeatedly to regulate tissue- and stage-specific transcriptional responses during development. Although recruitment of nuclear ß-catenin to target genomic loci serves as the hallmark of canonical Wnt signalling, mechanisms controlling stage- or tissue-specific transcriptional responses remain elusive. Here, a direct comparison of genome-wide occupancy of ß-catenin with a stage-matched Wnt-regulated transcriptome reveals that only a subset of ß-catenin-bound genomic loci are transcriptionally regulated by Wnt signalling. We demonstrate that Wnt signalling regulates ß-catenin binding to Wnt target genes not only when they are transcriptionally regulated, but also in contexts in which their transcription remains unaffected. The transcriptional response to Wnt signalling depends on additional mechanisms, such as BMP or FGF signalling for the particular genes we investigated, which do not influence ß-catenin recruitment. Our findings suggest a more general paradigm for Wnt-regulated transcriptional mechanisms, which is relevant for tissue-specific functions of Wnt/ß-catenin signalling in embryonic development but also for stem cell-mediated homeostasis and cancer. Chromatin association of ß-catenin, even to functional Wnt-response elements, can no longer be considered a proxy for identifying transcriptionally Wnt-regulated genes. Context-dependent mechanisms are crucial for transcriptional activation of Wnt/ß-catenin target genes subsequent to ß-catenin recruitment. Our conclusions therefore also imply that Wnt-regulated ß-catenin binding in one context can mark Wnt-regulated transcriptional target genes for different contexts.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Especificidade de Órgãos/genética , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/genética , beta Catenina/metabolismo , Animais , Sequência de Bases , Proteínas Morfogenéticas Ósseas/metabolismo , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Gástrula/metabolismo , Loci Gênicos , Genoma , Modelos Biológicos , Ligação Proteica/genética , Análise de Sequência de RNA , Transdução de Sinais/genética , Transcrição Gênica , Transcriptoma/genética , Xenopus/embriologia
12.
Infect Immun ; 86(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986894

RESUMO

Vivax malaria remains one of the most serious and neglected tropical diseases, with 132 to 391 million clinical cases per year and 2.5 billion people at risk of infection. A vaccine against Plasmodium vivax could have more impact than any other intervention, and the use of a vaccine targeting multiple antigens may result in higher efficacy against sporozoite infection than targeting a single antigen. Here, two leading P. vivax preerythrocytic vaccine candidate antigens, the P. vivax circumsporozoite protein (PvCSP) and the thrombospondin-related adhesion protein (PvTRAP) were delivered as a combined vaccine. This strategy provided a dose-sparing effect, with 100% sterile protection in mice using doses that individually conferred low or no protection, as with the unadjuvanted antigens PvTRAP (0%) and PvCSP (50%), and reached protection similar to that of adjuvanted components. Efficacy against malaria infection was assessed using a new mouse challenge model consisting of a double-transgenic Plasmodium berghei parasite simultaneously expressing PvCSP and PvTRAP used in mice immunized with the virus-like particle (VLP) Rv21 previously reported to induce high efficacy in mice using Matrix-M adjuvant, while PvTRAP was concomitantly administered in chimpanzee adenovirus and modified vaccinia virus Ankara (MVA) vectors (viral-vectored TRAP, or vvTRAP) to support effective induction of T cells. We examined immunity elicited by these vaccines in the context of two adjuvants approved for human use (AddaVax and Matrix-M). Matrix-M supported the highest anti-PvCSP antibody titers when combined with Rv21, and, interestingly, mixing PvCSP Rv21 and PvTRAP viral vectors enhanced immunity to malaria over levels provided by single vaccines.


Assuntos
Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Adenoviridae/genética , Adjuvantes Imunológicos , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Feminino , Vetores Genéticos , Malária Vivax/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Plasmodium berghei/genética , Plasmodium berghei/imunologia , Polissorbatos/administração & dosagem , Proteínas de Protozoários/administração & dosagem , Saponinas/administração & dosagem , Esqualeno/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vaccinia virus/genética
13.
An Acad Bras Cienc ; 90(2): 1823-1835, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29668798

RESUMO

The purpose of this investigation was to determine the influence of colored shade nets on the growth, anatomy and essential oil content, yield and chemical composition of Pogostemon cablin. The plants were cultivated under full sunlight, black, blue and red nets. The harvesting was performed 5 months after planting and it was followed by the analysis of plant growth parameters, leaf anatomy, essential oil content, yield and chemical composition. The plants grown under red net have produced more leaf, shoot, total dry weight and leaf area. Plants cultivated under colored nets showed differences in morphological features. Plants maintained under red net had a higher leaf blade thickness and polar and equatorial diameter of the stomata ratio. Additionally, higher yield of essential oil in the leaves was observed under red and blue colored shade net. The essential oil of the plants grown under red net showed the highest relative percentage of patchoulol (66.84%). Therefore, it is possible using colored shade nets to manipulate P. cablin growth, as well as its essential oil production with several chemical compositions. The analyses of principal components allowed observing that pogostol has negative correlation with α-guaiene and α-bulnesene. There was difference in total dry weight and patchoulol content when the patchouli is cultured under the red colored shade nets.


Assuntos
Cor , Luz , Óleos Voláteis/química , Folhas de Planta/crescimento & desenvolvimento , Pogostemon/crescimento & desenvolvimento , Peso Corporal/efeitos da radiação , Produção Agrícola/métodos , Escuridão , Óleos Voláteis/efeitos da radiação , Fotossíntese/efeitos da radiação , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/química , Pogostemon/anatomia & histologia , Pogostemon/efeitos da radiação , Tricomas/química
14.
Appl Environ Microbiol ; 83(19)2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754707

RESUMO

The human microbiome is a collection of microorganisms that inhabit every surface of the body that is exposed to the environment, generally coexisting peacefully with their host. These microbes have important functions, such as producing vitamins, aiding in maturation of the immune system, and protecting against pathogens. We have previously shown that a small-molecule extract from the human fecal microbiome has a strong repressive effect on Salmonella enterica serovar Typhimurium host cell invasion by modulating the expression of genes involved in this process. Here, we describe the characterization of this biological activity. Using a series of purification methods, we obtained fractions with biological activity and characterized them by mass spectrometry. These experiments revealed an abundance of aromatic compounds in the bioactive fraction. Selected compounds were obtained from commercial sources and tested with respect to their ability to repress the expression of hilA, the gene encoding the master regulator of invasion genes in Salmonella We found that the aromatic compound 3,4-dimethylbenzoic acid acts as a strong inhibitor of hilA expression and of invasion of cultured host cells by Salmonella Future studies should reveal the molecular details of this phenomenon, such as the signaling cascades involved in sensing this bioactive molecule.IMPORTANCE Microbes constantly sense and adapt to their environment. Often, this is achieved through the production and sensing of small extracellular molecules. The human body is colonized by complex communities of microbes, and, given their biological and chemical diversity, these ecosystems represent a platform where the production and sensing of molecules occur. In previous work, we showed that small molecules produced by microbes from the human gut can significantly impair the virulence of the enteric pathogen Salmonella enterica Here, we describe a specific compound from the human gut that produces this same effect. The results from this work not only shed light on an important biological phenomenon occurring in our bodies but also may represent an opportunity to develop drugs that can target these small-molecule interactions to protect us from enteric infections and other diseases.

15.
J Sport Rehabil ; 25(4): 364-370, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27632832

RESUMO

CONTEXT: Body-composition assessments of high-performance athletes are very important for identifying physical performance potential. Although the relationship between the kinanthropometric characteristics and performance abilities of Olympic swimmers is extremely important, this subject is not completely understood for Paralympic swimmers. OBJECTIVE: To investigate the relationship between body composition and sport performance in Brazilian Paralympic swimmers 6 mo after training. DESIGN: Experimental pre/posttest design. SETTING: Research laboratory and field evaluations of swimming were conducted to verify the 50-m freestyle time of each athlete. PARTICIPANTS: 17 Brazilian Paralympic swim team athletes (12 men, 5 women). MAIN OUTCOME MEASURES: Body-composition assessments were performed using a BOD POD, and swimming performance was assessed using the 50-m freestyle, which was performed twice: before and after 6 mo of training. RESULTS: Increased lean mass and significantly reduced relative fat mass and swimming time (P < .05) were observed 6 mo after training. Furthermore, a positive correlation between body-fat percentage and performance (r = .66, P < .05) was observed, but there was no significant correlation between body density and performance (r = -.14, P > .05). CONCLUSIONS: After a 6-mo training period, Paralympic swimmers presented reduced fat mass and increased lean body mass associated with performance, as measured by 50-m freestyle time. These data suggest that reduced fat-mass percentage was significantly correlated with improved swimming performance in Paralympic athletes.


Assuntos
Desempenho Atlético/fisiologia , Composição Corporal/fisiologia , Pessoas com Deficiência , Natação/fisiologia , Adolescente , Adulto , Brasil , Feminino , Humanos , Masculino , Adulto Jovem
16.
Nanomedicine ; 11(2): 351-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25461288

RESUMO

Several synthetic metallated protoporphyrins (M-PPIX) were tested for their ability to block the cell cycle of the lethal human malaria parasite Plasmodium falciparum. After encapsulating the porphyrin derivatives in micro- and nanocapsules of marine atelocollagen, their effects on cultures of red blood cells infected (RBC) with P. falciparum were verified. RBCs infected with synchronized P. falciparum incubated for 48 h showed a toxic effect over a micromolar range. Strikingly, the IC50 of encapsulated metalloporphyrins reached nanomolar concentrations, where Zn-PPIX showed the best antimalarial effect, with an IC50=330 nM. This value is an 80-fold increase in the antimalarial activity compared to the antimalarial effect of non-encapsulated Zn-PPIX. These findings reveal that the incubation of P. falciparum infected-RBCs with 20 µM Zn-PPIX reduced the size of hemozoin crystal by 34%, whereas a 28% reduction was noticed with chloroquine, confirming the importance of heme detoxification pathway in drug therapy. FROM THE CLINICAL EDITOR: In this study, synthetic metalloporphyrins were tested as therapeutics that target Plasmodium falciparum. The IC50 of encapsulated metalloporphyrins was found to be in the nanomolar concentration range, with encapsulated Zn-PPIX showing an 80-fold increase in its antimalarial activity compared to the non-encapsulated form.


Assuntos
Antimaláricos/administração & dosagem , Malária Falciparum/tratamento farmacológico , Metaloporfirinas/administração & dosagem , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/química , Colágeno/administração & dosagem , Colágeno/química , Humanos , Malária Falciparum/parasitologia , Nanocápsulas/administração & dosagem , Nanocápsulas/química
17.
Microsc Microanal ; 21(4): 994-1005, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26123063

RESUMO

We present a simple and robust method to acquire quantitative maps of compositional fluctuations in nanostructures from low magnification high-angle annular dark field (HAADF) micrographs calibrated by energy-dispersive X-ray (EDX) spectroscopy in scanning transmission electron microscopy (STEM) mode. We show that a nonuniform background in HAADF-STEM micrographs can be eliminated, to a first approximation, by use of a suitable analytic function. The uncertainty in probe position when collecting an EDX spectrum renders the calibration of HAADF-STEM micrographs indirect, and a statistical approach has been developed to determine the position with confidence. Our analysis procedure, presented in a flowchart to facilitate the successful implementation of the method by users, was applied to discontinuous InGaN/GaN quantum wells in order to obtain quantitative determinations of compositional fluctuations on the nanoscale.

18.
Malar J ; 13: 238, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24938886

RESUMO

BACKGROUND: Due to students' initial inexperience, slides are frequently broken and blood smears are damaged in microscopy training, leading to the need for their constant replacement. To minimize this problem a method of preparing blood smears on transparent acetate sheets was developed with the goal of implementing appropriate and more readily available teaching resources for the microscopic diagnosis of malaria. METHODS: Acetate sheets derived from polyester were used to standardize the preparation and staining of thin and thick blood smears on transparent acetate sheets. Thick and thin blood smears were also prepared using the conventional method on glass slides. The staining was conducted using Giemsa staining for the thick and thin smears. RESULTS: Microscopic examination (1,000x) of the thin and thick blood smears prepared on transparent acetate produced high-quality images for both the parasites and the blood cells. The smears showed up on a clear background and with minimal dye precipitation. It was possible to clearly identify the main morphological characteristics of Plasmodium, neutrophils and platelets. After 12 months of storage, there was no change in image quality or evidence of fungal colonization. CONCLUSION: Preparation of thin and thick blood smears in transparent acetate for the microscopic diagnosis of malaria does not compromise the morphological and staining characteristics of the parasites or blood cells. It is reasonable to predict the applicability of transparent acetate in relevant situations such as the training of qualified professionals for the microscopic diagnosis of malaria and the preparation of positive specimens for competency assessment (quality control) of professionals and services involved in the diagnosis of malaria.


Assuntos
Sangue/parasitologia , Educação Médica/métodos , Malária/diagnóstico , Microscopia/métodos , Plasmodium/citologia , Manejo de Espécimes/métodos , Manejo de Espécimes/normas , Acetatos , Humanos
19.
Microsc Res Tech ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390770

RESUMO

Quinone outside inhibitor (QoI) fungicide resistance in Alternaria alternata populations was reported in Brazil for the first time in 2019, in São Paulo orchards, and the mutation G143A in cytochrome b (cytb) was found in resistant isolates. Our study investigated the infectious process, production of reactive oxygen species (ROS), and fungal cell death in resistant (QoI-R) and sensitive (QoI-S) A. alternata pathotype tangerine (Aapt) isolates. Morphological characterization of Aapt isolates was performed using confocal laser scanning microscopy (CLSM). Alternaria brown spot (ABS) symptoms were produced by Aapt isolates on tangelo cv. BRS Piemonte. Germination of QoI-R conidia and production of germ tubes on tangelo leaflets treated with 100 µg mL-1 of pyraclostrobin 18 h after inoculation (hai) was observed using scanning electron microscopy (SEM). At the same time, QoI-S conidial germination was inhibited on tangelo leaflets treated with pyraclostrobin. ROS production and cell death in Aapt isolates at high fungicide concentrations were observed using CLSM. QoI-S conidia exhibited high ROS production, indicating high oxidative stress. When dyed with propidium iodate (PI), QoI-S conidia emitted red fluorescence, showing cell death and confirming their sensitive phenotype. In contrast, QoI-R conidia neither produced ROS nor exhibited red fluorescence, indicating no cell death and confirming their resistant phenotype. Therefore, our findings evidence that microscopic techniques may help characterize events during fungi-plant interactions, ROS production, cell death, and Aapt phenotypes resistant and sensitive to QoIs using fluorometric protocols.

20.
Psychoneuroendocrinology ; 168: 107114, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38991306

RESUMO

OBJECTIVE: To synthesise the literature examining the autonomic nervous system (ANS) and cortisol responses to an acute stressor following total sleep deprivation (TSD) in healthy adult subjects. METHODS: We conducted a systematic review (CRD42022293857) following the latest PRISMA statement. We searched Medline (via Ovid), Embase (via Ovid), PsycINFO (via Ovid), CINAHL complete and Scopus databases, without year restriction, using search terms related to "sleep deprivation", "stress", "autonomic nervous system" and "cortisol". Two independent team members used pre-defined inclusion/exclusion criteria to assess eligibility and extract data. We used RoB 2 to assess the risk of bias in randomised controlled trials, and ROBINS-I for non-randomised studies. RESULTS: Sixteen studies, with 581 participants (mean age = 29 ± 12 years), were eligible for inclusion in the descriptive syntheses. Half of the studies (n = 8) were conducted in the United States of America. The most commonly used study designs were randomised crossover studies (n = 7) and randomised controlled trials (n = 5). Most studies used a single night of TSD (n = 13) which was followed by a psychological (n = 6), physical (n = 5) or psychological and physical (n = 5) acute stressor event. Heart rate (n = 8), cortisol (n = 7) and blood pressure (n =6) were the most reported outcomes, while only a single study used forearm vascular conductance and forearm blood flow. Ten studies found that TSD changed, at least, one marker of ANS or cortisol response. TSD compared with a sleep control condition increased cortisol level (n=1), systolic blood pressure (n=3), diastolic blood pressure (n=2), mean arterial pressure (n=1), and electrodermal activity (n=1) after acute stress. Also, compared with a sleep control, TSD blunted cortisol (n=2), heart rate (n=1) and systolic blood pressure (n=2) responses after acute stress. However, TSD did not change ANS or cortisol responses to acute stressors in 73 % of the total reported outcomes. Furthermore, 10 RCT studies (62.5 %) were assigned as "some concerns" and two RCT studies (12.5 %) were attributed "high" risk of bias. Additionally, one non-randomised trial was classified as "moderate" and three non-randomised trials as "serious" risk of bias. CONCLUSION: The markers of ANS and cortisol responses to acute stress after TSD in healthy individuals reveal a scarcity of consistent evidence. The included studies present enough evidence that TSD induces either blunted or exaggerated ANS or cortisol responses to laboratory stresses supporting the "bidirectional multi-system reactivity hypothesis.". It appears that a comprehensive understanding of this phenomenon still lacks robust evidence, and further research is needed to clarify these relationships.


Assuntos
Sistema Nervoso Autônomo , Hidrocortisona , Privação do Sono , Estresse Psicológico , Humanos , Hidrocortisona/metabolismo , Sistema Nervoso Autônomo/fisiopatologia , Sistema Nervoso Autônomo/metabolismo , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Adulto , Frequência Cardíaca/fisiologia , Voluntários Saudáveis , Masculino , Feminino , Saliva/química , Saliva/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA