Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 25(7): e202400022, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38269625

RESUMO

The factors governing the acceleration of the oxidative addition of methyl iodide to pincer rhodium(I)-complexes induced by coronene have been computationally explored in detail using quantum chemical methods. Both the parent reaction and the coronene-mediated process proceed via a stepwise SN2-type mechanism. It is found that the acceleration of the process derives from the formation of an initial supramolecular complex, mainly stabilized by electrostatic and π-π interactions, which significantly increases the electron richness of the complex. The impact of this effect on the reaction barrier has been quantitatively analyzed by applying the activation strain model in combination with the energy decomposition analysis method. In addition, the influence of other polycyclic aromatic hydrocarbons on the oxidative reaction has been also considered.

2.
Chemphyschem ; 25(14): e202400341, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878294

RESUMO

Despite prenol emerging as a next-generation biofuel, some questions about its mechanism still need to be adequately proposed to rationalize its consumption and evaluate its efficiency in spark-ignition (SI) engines. Here, we present new insights into the reaction mechanism of prenol (3-methyl-2-buten-1-ol) with OH radicals as a function of temperature and pressure. We have determined that the different temperature and pressure conditions control the preferred products. At combustion temperatures and low pressures, OH-addition adducts are suppressed, increasing the formation of α and δ allylic radicals responsible for the auto-ignition.

3.
J Chem Phys ; 160(11)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38488078

RESUMO

In this work, we have evaluated the influence of temperature and pressure on the mechanism of furan oxidation by the OH radical. The stationary points on the potential energy surface were described at the M06-2X/aug-cc-pVTZ level of theory. In the kinetic treatment at the high-pressure limit (HPL), we have combined the multistructural canonical variational theory with multidimensional small-curvature tunneling corrections and long-range transition state theory. The system-specific quantum Rice-Ramsperger-Kassel theory was employed to estimate the pressure-dependent rate. In the HPL, the OH addition on the α carbon is the dominant pathway in the mechanism, producing a product via the ring-opening process, also confirmed by the product branching ratio calculations. The overall rate constant, obtained by a kinetic Monte Carlo simulation, reads the form koverall=5.22×10-13T/3001.10⁡exp1247(K/T) and indicates that the furan oxidation by OH radicals is a pressure-independent reaction under tropospheric conditions.

4.
Sensors (Basel) ; 24(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39275534

RESUMO

Maritime traffic is essential for global trade but faces significant challenges, including navigation safety, environmental protection, and the prevention of illicit activities. This work presents a framework for detecting illegal activities carried out by vessels, combining navigation behavior detection models with rules based on expert knowledge. Using synthetic and real datasets based on the Automatic Identification System (AIS), we structured our framework into five levels based on the Joint Directors of Laboratories (JDL) model, efficiently integrating data from multiple sources. Activities are classified into four categories: illegal fishing, suspicious activity, anomalous activity, and normal activity. To address the issue of a lack of labels and integrate data-driven detection with expert knowledge, we employed a stack ensemble model along with active learning. The results showed that the framework was highly effective, achieving 99% accuracy in detecting illegal fishing and 92% in detecting suspicious activities. Furthermore, it drastically reduced the need for manual checks by specialists, transforming experts' tacit knowledge into explicit knowledge through the models and allowing continuous updates of maritime domain rules. This work significantly contributes to maritime surveillance, offering a scalable and efficient solution for detecting illegal activities in the maritime domain.

5.
Semin Cancer Biol ; 82: 94-119, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33290846

RESUMO

Metabolic reprogramming is one of the main hallmarks of cancer cells. It refers to the metabolic adaptations of tumor cells in response to nutrient deficiency, microenvironmental insults, and anti-cancer therapies. Metabolic transformation during tumor development plays a critical role in the continued tumor growth and progression and is driven by a complex interplay between the tumor mutational landscape, epigenetic modifications, and microenvironmental influences. Understanding the tumor metabolic vulnerabilities might open novel diagnostic and therapeutic approaches with the potential to improve the efficacy of current tumor treatments. Prostate cancer is a highly heterogeneous disease harboring different mutations and tumor cell phenotypes. While the increase of intra-tumor genetic and epigenetic heterogeneity is associated with tumor progression, less is known about metabolic regulation of prostate cancer cell heterogeneity and plasticity. This review summarizes the central metabolic adaptations in prostate tumors, state-of-the-art technologies for metabolic analysis, and the perspectives for metabolic targeting and diagnostic implications.


Assuntos
Neoplasias da Próstata , Epigênese Genética , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo
6.
Org Biomol Chem ; 21(38): 7767-7775, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37698053

RESUMO

The reactivity and endo/exo selectivity of the Diels-Alder cycloaddition reactions involving furan and substituted furans as dienes have been computationally explored. In comparison to cyclopentadiene, it is found that furan is comparatively less reactive and also less endo-selective in the reaction with maleic anhydride as the dienophile. Despite that, both the reactivity and the selectivity can be successfully modified by the presence of substituents at either 2- or 3-positions of the heterocycle. In this sense, it is found that the presence of strong electron-donor groups significantly increases the reactivity of the system while the opposite is found in the presence of electron-withdrawing groups. The observed trends in both the reactivity and selectivity are analyzed quantitatively in detail by means of the activation strain model of reactivity in combination with the energy decomposition analysis methods.

7.
Phys Chem Chem Phys ; 25(29): 19512-19523, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37458056

RESUMO

Thermal rate constants for the hydrogen abstraction reaction of methyl pentanoate were calculated using the multistructural canonical variational theory with small-curvature tunneling (MS-CVT/SCT). The conformational search for the stationary points generated by these reactions was performed with an algorithm that combines systematic and stochastic searches at dual-level. At the high-level (MPWB1K/6-31+G(d,p)), 244 geometries for methyl pentanoate and transition states were found. A systematic estimative of the efficiency of the truncation of multistructural rovibrational partition functions and its effects on thermal rate constants was carried out. In this analysis, we observed that rotation about -OCH3 group (ϕ4) of the ester generates unstable structures with little contribution to the magnitude of the partition function. We also estimate that the truncation of the partition functions in a small set of conformations can produce deviations up to 75% compared to converged theoretical results.

8.
J Phys Chem A ; 127(19): 4317-4327, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37026895

RESUMO

We investigate the photoionization pathways of naphthalene, 1-cyanonaphthalene, and 2-cyanonaphthalene upon complexation with the water dimer, aiming to understand the photodissociation process under conditions of the interstellar medium (ISM). We analyze the intermolecular bonding pattern, equilibrium rotational properties, energy complexation, far-IR spectra, and ionic trends of the possible photoproducts using dispersion-corrected density functional theory (DFT-D) and time-dependent DFT (TD-DFT). For the different configurations, we evaluate the possible charge-transfer (CT) excitations near the photoionization limit. Our results indicate that, in high-radiation regions of the ISM (>8.0 eV), CT excitations occur from localized occupied molecular orbitals (MOs) in the aromatic molecules to mixed unoccupied MOs in the complexes, favoring cationic aromatic species in these conditions. We notice that the photoabsorption spectra depend on the type of intermolecular interaction (H-bonds or O-H···π bonds) in the complexes, as well as the presence and position (1 or 2) of the cyano-functional group in naphthalene. For hydrated naphthalene, the O-H···π complexes assume a more relevant role for photodissociation. In the case of the cyano-substituted derivatives, the H-bonded structures are more favorable to be considered as prereactive models. However, the cyano group at position 2 indicates that CT excitations toward the water dimer are more likely to occur.

9.
Nature ; 545(7653): 224-228, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28467822

RESUMO

Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are important to these processes. Although much is known about vascular endothelial growth factor (VEGF)-dependent regulation of vascular development and metabolism, little is understood about the role of fibroblast growth factors (FGFs) in this context. Here we identify FGF receptor (FGFR) signalling as a critical regulator of vascular development. This is achieved by FGF-dependent control of c-MYC (MYC) expression that, in turn, regulates expression of the glycolytic enzyme hexokinase 2 (HK2). A decrease in HK2 levels in the absence of FGF signalling inputs results in decreased glycolysis, leading to impaired endothelial cell proliferation and migration. Pan-endothelial- and lymphatic-specific Hk2 knockouts phenocopy blood and/or lymphatic vascular defects seen in Fgfr1/Fgfr3 double mutant mice, while HK2 overexpression partly rescues the defects caused by suppression of FGF signalling. Thus, FGF-dependent regulation of endothelial glycolysis is a pivotal process in developmental and adult vascular growth and development.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Glicólise , Neovascularização Fisiológica , Transdução de Sinais , Animais , Movimento Celular , Proliferação de Células , Feminino , Hexoquinase/metabolismo , Linfangiogênese , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo
10.
Opt Express ; 30(6): 9623-9642, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299385

RESUMO

Quantum and neuromorphic computational platforms in integrated photonic circuits require next-generation optical functionalities. Often, increasingly complex on-chip light-routing that allow superpositions not attainable by planar technologies are paramount e.g. for artificial neural networks. Versatile 3D waveguides are achievable via two-photon polymerization (TPP)-based microprinting. Here, a 3D morphology prediction tool which considers experimental TPP parameters, is presented, enabling on-chip 3D waveguide performance simulations. The simulations allow reducing the cost-intensive systematic experimental optimization process. Fabricated 3D waveguides show optical transmission properties in agreement with simulations, demonstrating that the developed morphology prediction methodology is beneficial for the development of versatile on-chip and potentially inter-chip photonic interconnect technology.

11.
FASEB J ; 35(3): e21425, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33566443

RESUMO

Histamine-induced vascular leakage is a core process of allergic pathologies, including anaphylaxis. Here, we show that glycolysis is integral to histamine-induced endothelial barrier disruption and hyperpermeability. Histamine rapidly enhanced glycolysis in endothelial cells via a pathway that involved histamine receptor 1 and phospholipase C beta signaling. Consistently, partial inhibition of glycolysis with 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) prevented histamine-induced hyperpermeability in human microvascular endothelial cells, by abolishing the histamine-induced actomyosin contraction, focal adherens junction formation, and endothelial barrier disruption. Pharmacologic blockade of glycolysis with 3PO in mice reduced histamine-induced vascular hyperpermeability, prevented vascular leakage in passive cutaneous anaphylaxis and protected from systemic anaphylaxis. In conclusion, we elucidated the role of glycolysis in histamine-induced disruption of endothelial barrier integrity. Our data thereby point to endothelial glycolysis as a novel therapeutic target for human pathologies related to excessive vascular leakage, such as systemic anaphylaxis.


Assuntos
Permeabilidade Capilar/fisiologia , Células Endoteliais/efeitos dos fármacos , Glicólise/fisiologia , Histamina/farmacologia , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Anafilaxia/metabolismo , Anafilaxia/patologia , Animais , Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Camundongos , Fosfolipase C beta/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
J Phys Chem A ; 126(29): 4791-4800, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35839446

RESUMO

Thermal rate coefficients for the hydrogen abstraction reactions of prenol (3-methyl-2-butenol) by a hydrogen atom were calculated with the multipath canonical variational theory with small-curvature tunneling (MP-CVT/SCT). The conformational search was performed with a dual-level approach, and the multistructural torsional anharmonicity effects were corrected through the rovibrational partition function calculated with the multistructural method based on a coupled torsional potential (MS-T(C)). This methodology allows us to estimate the thermal rate constants in the temperature range of 200-2500 K and fit them into two analytical expressions. Differences between the number of conformations on the torsional potential energy surfaces for prenol and the transition state decrease the thermal rate constants for the H-abstraction at the α carbon. An opposite behavior was detected for the abstractions on the δ site. The product branching ratios were calculated using single-structure and multipath approaches. The product distributions from the former are shown to be inadequate for studying the mechanism under combustion conditions. The values estimated from MP-CVT/SCT rate coefficients indicated that the radicals from (Rα) and (Rδ)/(Rδ') are formed in considerable amounts. These species are fundamental in comprehending the inhibition and promotion of the autoignition phenomena.


Assuntos
Biocombustíveis , Hidrogênio , Compreensão , Hemiterpenos , Hidrogênio/química , Cinética , Pentanóis
13.
PLoS Pathog ; 15(9): e1007651, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31513674

RESUMO

Bacterial type IV secretion systems (T4SS) are a highly diversified but evolutionarily related family of macromolecule transporters that can secrete proteins and DNA into the extracellular medium or into target cells. It was recently shown that a subtype of T4SS harboured by the plant pathogen Xanthomonas citri transfers toxins into target cells. Here, we show that a similar T4SS from the multi-drug-resistant opportunistic pathogen Stenotrophomonas maltophilia is proficient in killing competitor bacterial species. T4SS-dependent duelling between S. maltophilia and X. citri was observed by time-lapse fluorescence microscopy. A bioinformatic search of the S. maltophilia K279a genome for proteins containing a C-terminal domain conserved in X. citri T4SS effectors (XVIPCD) identified twelve putative effectors and their cognate immunity proteins. We selected a putative S. maltophilia effector with unknown function (Smlt3024) for further characterization and confirmed that it is indeed secreted in a T4SS-dependent manner. Expression of Smlt3024 in the periplasm of E. coli or its contact-dependent delivery via T4SS into E. coli by X. citri resulted in reduced growth rates, which could be counteracted by expression of its cognate inhibitor Smlt3025 in the target cell. Furthermore, expression of the VirD4 coupling protein of X. citri can restore the function of S. maltophilia ΔvirD4, demonstrating that effectors from one species can be recognized for transfer by T4SSs from another species. Interestingly, Smlt3024 is homologous to the N-terminal domain of large Ca2+-binding RTX proteins and the crystal structure of Smlt3025 revealed a topology similar to the iron-regulated protein FrpD from Neisseria meningitidis which has been shown to interact with the RTX protein FrpC. This work expands our current knowledge about the function of bacteria-killing T4SSs and increases the panel of effectors known to be involved in T4SS-mediated interbacterial competition, which possibly contribute to the establishment of S. maltophilia in clinical and environmental settings.


Assuntos
Proteínas de Bactérias/fisiologia , Stenotrophomonas maltophilia/fisiologia , Stenotrophomonas maltophilia/patogenicidade , Sistemas de Secreção Tipo IV/fisiologia , Sequência de Aminoácidos , Antibiose/genética , Antibiose/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência Conservada , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Genes Bacterianos , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Proteínas Reguladoras de Ferro/química , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/fisiologia , Modelos Moleculares , Infecções Oportunistas/microbiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Stenotrophomonas maltophilia/genética , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/genética , Xanthomonas/genética , Xanthomonas/crescimento & desenvolvimento
14.
Phys Chem Chem Phys ; 23(44): 25414-25423, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34751697

RESUMO

Thermal rate coefficients for the hydrogen-abstraction reactions of 3-butenal by a hydrogen atom were obtained applying multipath canonical variational theory with small-curvature tunneling (MP-CVT/SCT). Torsional anharmonicity due to the hindered rotors was taken into account by calculating the rovibrational partition function using the extended two-dimensional torsional (E2DT) method. For comparison, rovibrational partition functions were also estimated using the multistructural method with torsional anharmonicity based on a coupled torsional potential (MS-T(C)). By contrast, with (E)-2-butenal reactions, the abstraction reactions of 3-butenal proceed via five reaction channels (R1)-(R5). In a conformational search, 45 distinguishable structures of transition states were found, including enantiomers, which were separated into six conformational reaction channels (CRCs). The individual reactive paths were constructed, the recrossing and semiclassical transmission coefficients estimated, and the multipath rate constants were obtained. High torsional barriers between the wells of CRC2/CRC6 indicate a harmonic behavior. Consequently, a difference between the torsional anharmonicity of 3-butenal and the transition states is responsible for the increase in the thermal rate constants for channel (R2). Analysis of the contributions of each conformer of the transition state shows an important contribution of the high-energy rotamers in the total flux of (R1)-(R5). After fitting the rate constants in a four-parameter equation, the activation energy estimation showed a strong temperature dependence.

15.
Sensors (Basel) ; 21(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34372288

RESUMO

The image stitching process is based on the alignment and composition of multiple images that represent parts of a 3D scene. The automatic construction of panoramas from multiple digital images is a technique of great importance, finding applications in different areas such as remote sensing and inspection and maintenance in many work environments. In traditional automatic image stitching, image alignment is generally performed by the Levenberg-Marquardt numerical-based method. Although these traditional approaches only present minor flaws in the final reconstruction, the final result is not appropriate for industrial grade applications. To improve the final stitching quality, this work uses a RGBD robot capable of precise image positing. To optimize the final adjustment, this paper proposes the use of bio-inspired algorithms such as Bat Algorithm, Grey Wolf Optimizer, Arithmetic Optimization Algorithm, Salp Swarm Algorithm and Particle Swarm Optimization in order verify the efficiency and competitiveness of metaheuristics against the classical Levenberg-Marquardt method. The obtained results showed that metaheuristcs have found better solutions than the traditional approach.


Assuntos
Algoritmos , Humanos
16.
J Comput Chem ; 41(3): 231-239, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31639231

RESUMO

The rate constants and H/D kinetic isotope effect for hydrogen abstraction reactions involving isotopomers of methyl formate by methyl radical are computed employing methods of the variational transition state theory (VTST) with multidimensional tunneling corrections. The energy paths were built with a dual-level method using the moller plesset second-order perturbation theory (MP2) method as the low-level and complete basis set (CBS) extrapolation as the high-level energy method. Benchmark calculations with the CBSD-T approach give an enthalpy of reaction at 0 K for R1 (-4.5 kcal/mol) and R2 (-4.2 kcal/mol) which are in good agreement with the experiment, that is, -4.0 and - 4.8 kcal/mol. For the reactional paths involving the isotopomers CH3 + CH3 OCOH → CH4 + CH3 OCO and CH3 + CH3 OCOD → CH3 D + CH3 OCO, the value of kH /kD (T = 455 K) using the canonical VTST/small-curvature tunneling approximation method is 6.7 in close agreement with experimental value (6.2). © 2019 Wiley Periodicals, Inc.

17.
Phys Chem Chem Phys ; 22(25): 14246-14254, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32555895

RESUMO

Thermal rate constants for the hydrogen abstraction reactions of (E)-2-butenal by hydrogen atoms were calculated, for the first time, using the multipath canonical variational theory with small-curvature tunneling (MP-CVT/SCT). After a torsional potential energy surface exploration, ten conformations of the transition states (including the mirror images) were found and separated into four conformational reaction channels (CRCs). Individual energy paths of each CRC were built, recrossing and quantum tunneling effects estimated, and the thermal rate constants obtained. Due to the hindered rotors, the torsional anharmonicity was incorporated in the rate coefficient through the calculations of the rovibrational partition functions using the extended two-dimensional torsional method (E2DT). For comparison, the one-well (1W-CVT/SCT) and harmonic multipath (MP-CVT/SCT) thermal rate constants were also estimated. In addition, kinetic Monte Carlo (KMC) simulations were performed to predict the product branching ratios. For all kinetic approaches, the formation of products of (R1) is predominant. Compared to the harmonic multipath estimation, the percentage of reaction (R4) increases by approximately 9% when the torsional anharmonicity is taken into account. For the reactions (R2) and (R3), the product branching ratio is slightly decreased when compared with the harmonic simulation.

18.
Opt Express ; 27(1): 74-91, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30645360

RESUMO

We investigate the bending and twisting-induced longitudinal variation of the inter-core coupling coefficient (ICCC) and its effect on inter-core crosstalk (ICXT) in weakly coupled multi-core fibers (MCFs) with an arbitrary core layout. An analytical discrete changes model (DCM) for ICXT field propagation under those conditions is proposed for the first time, providing very fast and rather accurate mean ICXT power estimates. The analytical mean ICXT power estimates are validated through numerical simulation. It is predicted that the mean ICXT power between adjacent cores of the outer ring of the 19-core MCF can be more than 10 dB higher than the one between adjacent cores of the inner ring. It is also predicted that the difference between the mean ICXT power of cores in the inner and outer rings can be much smaller by decreasing the core pitch and increasing the bending radius. This behavior is attributed to the ICXT dependence on the bending and twisting-induced longitudinal variation of the ICCCs. In particular, larger bending and twisting-induced fluctuations of the ICCCs along the longitudinal coordinate are observed in the cores of the outer ring, but the fluctuations become smaller for smaller core pitches and larger bending radii. Furthermore, it is shown that, if the ICCCs' longitudinal variation is neglected, the mean ICXT power estimates between two adjacent cores are very similar despite the location of those cores. This means that neglecting the longitudinal variation of the ICCCs can lead to misleading estimates of the mean ICXT power, with an error exceeding 15 dB.

19.
Proc Natl Acad Sci U S A ; 113(24): E3423-30, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247419

RESUMO

A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver. Here we show that ASS regulates hepatic AMPK, revealing a central role for ureagenesis flux in the regulation of metabolism via AMPK. Treatment of primary rat hepatocytes with amino acids increased gluconeogenesis and ureagenesis and, despite nutrient excess, induced both AMPK and acetyl-CoA carboxylase (ACC) phosphorylation. Antisense oligonucleotide knockdown of hepatic ASS1 expression in vivo decreased liver AMPK activation, phosphorylation of ACC, and plasma ß-hydroxybutyrate concentrations. Taken together these studies demonstrate that increased amino acid flux can activate AMPK through increased AMP generated by ASS, thus providing a novel link between protein catabolism, ureagenesis, and hepatic lipid metabolism.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Argininossuccinato Sintase/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Ureia/metabolismo , Animais , Ativação Enzimática , Ratos , Ratos Sprague-Dawley
20.
Nano Lett ; 18(11): 7289-7297, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30352162

RESUMO

The localized surface plasmon resonance (LSPR) excitation in plasmonic nanoparticles has been used to accelerate several catalytic transformations under visible-light irradiation. In order to fully harness the potential of plasmonic catalysis, multimetallic nanoparticles containing a plasmonic and a catalytic component, where LSPR-excited energetic charge carriers and the intrinsic catalytic active sites work synergistically, have raised increased attention. Despite several exciting studies observing rate enhancements, controlling reaction selectivity remains very challenging. Here, by employing multimetallic nanoparticles combining Au, Ag, and Pt in an Au@Ag@Pt core-shell and an Au@AgPt nanorattle architectures, we demonstrate that reaction selectivity of a sequential reaction can be controlled under visible light illumination. The control of the reaction selectivity in plasmonic catalysis was demonstrated for the hydrogenation of phenylacetylene as a model transformation. We have found that the localized interaction between the triple bond in phenylacetylene and the Pt nanoparticle surface enables selective hydrogenation of the triple bond (relative to the double bond in styrene) under visible light illumination. Atomistic calculations show that the enhanced selectivity toward the partial hydrogenation product is driven by distinct adsorption configurations and charge delocalization of the reactant and the reaction intermediate at the catalyst surface. We believe these results will contribute to the use of plasmonic catalysis to drive and control a wealth of selective molecular transformations under ecofriendly conditions and visible light illumination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA