RESUMO
BACKGROUND: Exposure to ambient air pollution is known to cause direct and indirect molecular expression changes in the placenta, on the DNA, mRNA, and protein levels. Ambient black carbon (BC) particles can be found in the human placenta already very early in gestation. However, the effect of in utero BC exposure on the entire placental proteome has never been studied to date. OBJECTIVES: We explored whether placental proteome differs between mothers exposed to either high or low BC levels throughout the entire pregnancy. METHODS: We used placental tissue samples from the ENVIRONAGE birth cohort, of 20 non-smoking, maternal- and neonate characteristic-matched women exposed to high (n=10) or low (n=10) levels of ambient BC throughout pregnancy. We modeled prenatal BC exposure levels based on the mother's home address and measured BC levels in the fetal side of the placenta. The placental proteome was analyzed by nano-liquid chromatography Q-TOF mass spectrometry. PEAKS software was used for protein identification and label-free quantification. Protein-protein interaction and functional pathway enrichment analyses were performed with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) software. RESULTS: The accumulation of BC particles in placenta was 2.19 times higher in the high versus low exposure group (20943.4 vs 9542.7 particles/mm³; p=0.007). Thirteen proteins showed a ≥ 2-fold expression difference between the two exposure groups, all overexpressed in the placentas of women prenatally exposed to high BC levels. Three protein-protein interactions were enriched within this group, namely between TIMP3 and COL4A2, SERPINE2 and COL4A2, and SERPINE2 and GP1BB. Functional pathway enrichment analysis put forward pathways involved in extracellular matrix-receptor interaction, fibrin clot formation, and sodium ion transport regulation. DISCUSSION: Prenatal BC exposure affects the placental proteome. Future research should focus on the potential consequences of these alterations on placental functioning, and health and disease during early childhood development.
RESUMO
BACKGROUND: Air pollution exposure is one of the major risk factors for aggravation of respiratory diseases. We investigated whether exposure to air pollution and accumulated black carbon (BC) particles in blood were associated with coronavirus disease 2019 (COVID-19) disease severity, including the risk for intensive care unit (ICU) admission and duration of hospitalisation. METHODS: From May 2020 until March 2021, 328 hospitalised COVID-19 patients (29% at intensive care) were recruited from two hospitals in Belgium. Daily exposure levels (from 2016 to 2019) for particulate matter with aerodynamic diameter <2.5â µm and <10â µm (PM2.5 and PM10, respectively), nitrogen dioxide (NO2) and BC were modelled using a high-resolution spatiotemporal model. Blood BC particles (internal exposure to nano-sized particles) were quantified using pulsed laser illumination. Primary clinical parameters and outcomes included duration of hospitalisation and risk of ICU admission. RESULTS: Independent of potential confounders, an interquartile range (IQR) increase in exposure in the week before admission was associated with increased duration of hospitalisation (PM2.5 +4.13 (95% CI 0.74-7.53)â days, PM10 +4.04 (95% CI 1.24-6.83)â days and NO2 +4.54 (95% CI 1.53-7.54)â days); similar effects were observed for long-term NO2 and BC exposure on hospitalisation duration. These effect sizes for an IQR increase in air pollution on hospitalisation duration were equivalent to the effect of a 10-year increase in age on hospitalisation duration. Furthermore, for an IQR higher blood BC load, the OR for ICU admission was 1.33 (95% CI 1.07-1.65). CONCLUSIONS: In hospitalised COVID-19 patients, higher pre-admission ambient air pollution and blood BC levels predicted adverse outcomes. Our findings imply that air pollution exposure influences COVID-19 severity and therefore the burden on medical care systems during the COVID-19 pandemic.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Fuligem , Dióxido de Nitrogênio/efeitos adversos , Pandemias , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , HospitalizaçãoRESUMO
BACKGROUND: Airborne pollution particles have been shown to translocate from the mother's lung to the fetal circulation, but their distribution and internal placental-fetal tissue load remain poorly explored. Here, we investigated the placental-fetal load and distribution of diesel engine exhaust particles during gestation under controlled exposure conditions using a pregnant rabbit model. Pregnant dams were exposed by nose-only inhalation to either clean air (controls) or diluted and filtered diesel engine exhaust (1 mg/m3) for 2 h/day, 5 days/week, from gestational day (GD) 3 to GD27. At GD28, placental and fetal tissues (i.e., heart, kidney, liver, lung and gonads) were collected for biometry and to study the presence of carbon particles (CPs) using white light generation by carbonaceous particles under femtosecond pulsed laser illumination. RESULTS: CPs were detected in the placenta, fetal heart, kidney, liver, lung and gonads in significantly higher amounts in exposed rabbits compared with controls. Through multiple factor analysis, we were able to discriminate the diesel engine exposed pregnant rabbits from the control group taking all variables related to fetoplacental biometry and CP load into consideration. Our findings did not reveal a sex effect, yet a potential interaction effect might be present between exposure and fetal sex. CONCLUSIONS: The results confirmed the translocation of maternally inhaled CPs from diesel engine exhaust to the placenta which could be detected in fetal organs during late-stage pregnancy. The exposed can be clearly discriminated from the control group with respect to fetoplacental biometry and CP load. The differential particle load in the fetal organs may contribute to the effects on fetoplacental biometry and to the malprogramming of the fetal phenotype with long-term effects later in life.
Assuntos
Placenta , Emissões de Veículos , Animais , Gravidez , Coelhos , Feminino , Emissões de Veículos/toxicidade , Carbono/toxicidade , Pulmão , FígadoRESUMO
Extracellular vesicles (EV) are biological nanoparticles that play an important role in cell-to-cell communication. The phenotypic profile of EV populations is a promising reporter of disease, with direct clinical diagnostic relevance. Yet, robust methods for quantifying the biomarker content of EV have been critically lacking, and require a single-particle approach due to their inherent heterogeneous nature. Here, multicolor single-molecule burst analysis microscopy is used to detect multiple biomarkers present on single EV. The authors classify the recorded signals and apply the machine learning-based t-distributed stochastic neighbor embedding algorithm to cluster the resulting multidimensional data. As a proof of principle, the authors use the method to assess both the purity and the inflammatory status of EV, and compare cell culture and plasma-derived EV isolated via different purification methods. This methodology is then applied to identify intercellular adhesion molecule-1 specific EV subgroups released by inflamed endothelial cells, and to prove that apolipoprotein-a1 is an excellent marker to identify the typical lipoprotein contamination in plasma. This methodology can be widely applied on standard confocal microscopes, thereby allowing both standardized quality assessment of patient plasma EV preparations, and diagnostic profiling of multiple EV biomarkers in health and disease.
Assuntos
Células Endoteliais , Vesículas Extracelulares , Análise por Conglomerados , Humanos , Plasma , Aprendizado de Máquina não SupervisionadoRESUMO
BACKGROUND: In vitro models are widely used in nanotoxicology. In these assays, a careful documentation of the fraction of nanomaterials that reaches the cells, i.e. the in vitro delivered dose, is a critical element for the interpretation of the data. The in vitro delivered dose can be measured by quantifying the amount of material in contact with the cells, or can be estimated by applying particokinetic models. For carbon nanotubes (CNTs), the determination of the in vitro delivered dose is not evident because their quantification in biological matrices is difficult, and particokinetic models are not adapted to high aspect ratio materials. Here, we applied a rapid and direct approach, based on femtosecond pulsed laser microscopy (FPLM), to assess the in vitro delivered dose of multi-walled CNTs (MWCNTs). METHODS AND RESULTS: We incubated mouse lung fibroblasts (MLg) and differentiated human monocytic cells (THP-1) in 96-well plates for 24 h with a set of different MWCNTs. The cytotoxic response to the MWCNTs was evaluated using the WST-1 assay in both cell lines, and the pro-inflammatory response was determined by measuring the release of IL-1ß by THP-1 cells. Contrasting cell responses were observed across the MWCNTs. The sedimentation rate of the different MWCNTs was assessed by monitoring turbidity decay with time in cell culture medium. These turbidity measurements revealed some differences among the MWCNT samples which, however, did not parallel the contrasting cell responses. FPLM measurements in cell culture wells revealed that the in vitro delivered MWCNT dose did not parallel sedimentation data, and suggested that cultured cells contributed to set up the delivered dose. The FPLM data allowed, for each MWCNT sample, an adjustment of the measured cytotoxicity and IL-1ß responses to the delivered doses. This adjusted in vitro activity led to another toxicity ranking of the MWCNT samples as compared to the unadjusted activities. In macrophages, this adjusted ranking was consistent with existing knowledge on the impact of surface MWCNT functionalization on cytotoxicity, and might better reflect the intrinsic activity of the MWCNT samples. CONCLUSION: The present study further highlights the need to estimate the in vitro delivered dose in cell culture experiments with nanomaterials. The FPLM measurement of the in vitro delivered dose of MWCNTs can enrich experimental results, and may refine our understanding of their interactions with cells.
Assuntos
Nanotubos de Carbono , Técnicas de Cultura de Células , Macrófagos , Microscopia Confocal , MonócitosRESUMO
BACKGROUND: Pregnant women and developing fetuses comprise a particularly vulnerable population as multiple studies have shown associations between prenatal air pollution exposure and adverse pregnancy outcomes. However, the mechanisms underlying the observed developmental toxicity are mostly unknown, in particular, if pollution particles can cross the human placenta to reach the fetal circulation. RESULTS: Here, we investigated the accumulation and translocation of diesel exhaust particles (DEPs), as a model particle for combustion-derived pollution, in human perfused placentae using label-free detection by femtosecond pulsed laser illumination. The results do not reveal a significant particle transfer across term placentae within 6 h of perfusion. However, DEPs accumulate in placental tissue, especially in the syncytiotrophoblast layer that mediates a wealth of essential functions to support and maintain a successful pregnancy. Furthermore, DEPs are found in placental macrophages and fetal endothelial cells, showing that some particles can overcome the syncytiotrophoblasts to reach the fetal capillaries. Few particles are also observed inside fetal microvessels. CONCLUSIONS: Overall, we show that DEPs accumulate in key cell types of the placental tissue and can cross the human placenta, although in limited amounts. These findings are crucial for risk assessment and protection of pregnant women and highlight the urgent need for further research on the direct and indirect placenta-mediated developmental toxicity of ambient particulates.
Assuntos
Nanopartículas/química , Placenta/metabolismo , Emissões de Veículos/análise , Transporte Biológico , Células Endoteliais , Monitoramento Ambiental/métodos , Poluição Ambiental , Feminino , Humanos , Nanopartículas/toxicidade , Perfusão , Gravidez , Emissões de Veículos/toxicidadeRESUMO
Boron dipyrromethene (BODIPY) dyes represent a particular class within the broad array of potential photosensitizers. Their highly fluorescent nature opens the door for theragnostic applications, combining imaging and therapy using a single, easily synthesized chromophore. However, near-infrared absorption is strongly desired for photodynamic therapy to enhance tissue penetration. Furthermore, singlet oxygen should preferentially be generated without the incorporation of heavy atoms, as these often require additional synthetic efforts and/or afford dark cytotoxicity. Solutions for both problems are known, but have never been successfully combined in one simple BODIPY material. Here, we present a series of compact BODIPY-acridine dyads, active in the phototherapeutic window and showing balanced brightness and phototoxic power. Although the donor-acceptor design was envisioned to introduce a charge transfer state to assist in intersystem crossing, quantum-chemical calculations refute this. Further photophysical investigations suggest the presence of exciplex states and their involvement in singlet oxygen formation.
RESUMO
Fetal development is a crucial window of susceptibility in which exposure may lead to detrimental health outcomes at birth and later in life. The placenta serves as a gatekeeper between mother and fetus. Knowledge regarding the barrier capacity of the placenta for nanoparticles is limited, mostly due to technical obstacles and ethical issues. We systematically summarize and discuss the current evidence and define knowledge gaps concerning the maternal-fetal transport and fetoplacental accumulation of (ultra)fine particles and nanoparticles. We included 73 studies on placental translocation of particles, of which 21 in vitro/ex vivo studies, 50 animal studies, and 2 human studies on transplacental particle transfer. This systematic review shows that (i) (ultra)fine particles and engineered nanoparticles can bypass the placenta and reach fetal units as observed for all the applied models irrespective of the species origin (i.e., rodent, rabbit, or human) or the complexity (i.e., in vitro, ex vivo, or in vivo), (ii) particle size, particle material, dose, particle dissolution, gestational stage of the model, and surface composition influence maternal-fetal translocation, and (iii) no simple, standardized method for nanoparticle detection and/or quantification in biological matrices is available to date. Existing evidence, research gaps, and perspectives of maternal-fetal particle transfer are highlighted.
Assuntos
Troca Materno-Fetal , Nanopartículas , Material Particulado , Animais , Feminino , Feto , Humanos , Tamanho da Partícula , Placenta , Gravidez , CoelhosRESUMO
Raster image correlation spectroscopy (RICS) is a fluorescence image analysis method for extracting the mobility, concentration, and stoichiometry of diffusing fluorescent molecules from confocal image stacks. The method works by calculating a spatial correlation function for each image and analyzing the average of those by model fitting. Rules of thumb exist for RICS image acquisitioning, yet a rigorous theoretical approach to predict the accuracy and precision of the recovered parameters has been lacking. We outline explicit expressions to reveal the dependence of RICS results on experimental parameters. In terms of imaging settings, we observed that a twofold decrease of the pixel size, e.g., from 100 to 50 nm, decreases the error on the translational diffusion constant (D) between three- and fivefold. For D = 1 µm2 s-1, a typical value for intracellular measurements, â¼25-fold lower mean-squared relative error was obtained when the optimal scan speed was used, although more drastic improvements were observed for other values of D. We proposed a slightly modified RICS calculation that allows correcting for the significant bias of the autocorrelation function at small (âª50 × 50 pixels) sizes of the region of interest. In terms of sample properties, at molecular brightness E = 100 kHz and higher, RICS data quality was sufficient using as little as 20 images, whereas the optimal number of frames for lower E scaled pro rata. RICS data quality was constant over the nM-µM concentration range. We developed a bootstrap-based confidence interval of D that outperformed the classical least-squares approach in terms of coverage probability of the true value of D. We validated the theory via in vitro experiments of enhanced green fluorescent protein at different buffer viscosities. Finally, we outline robust practical guidelines and provide free software to simulate the parameter effects on recovery of the diffusion coefficient.
Assuntos
Processamento de Imagem Assistida por Computador , Análise Espectral , Algoritmos , Simulação por Computador , Intervalos de Confiança , Proteínas de Fluorescência Verde/metabolismo , Método de Monte Carlo , ProbabilidadeRESUMO
The development of a universal probe to assess the phase of a lipid membrane is one of the most ambitious goals for fluorescence spectroscopy. The ability of a well-known molecule as Laurdan to reach this aim is here exploited as the behavior of the probe is fully characterized in a dipalmitoylphosphatidylcholine (DPPC) solid gel (So) phase by means of molecular dynamics simulations. Laurdan can take two conformations, depending on whether the carbonyl oxygen points toward the ß-position of the naphthalene core (Conf-I) or to the α-position (Conf-II). We observe that Conf-I has an elongated form in this environment, whereas Conf-II takes an L-shape. Interestingly, our theoretical calculations show that these two conformations behave in an opposite way from what is reported in the literature for a DPPC membrane in a liquid disordered (Ld) phase, where Conf-I assumes an L-shape and Conf-II is elongated. Moreover, our results show that in DPPC (So) no intermixing between the conformations is present, whereas it has been seen in a fluid environment such as DOPC (Ld). Through a careful analysis of angle distributions and by means of the rotational autocorrelation function, we predict that the two conformers of Laurdan behave differently in different membrane environments.
RESUMO
Raster image cross-correlation spectroscopy (ccRICS) can be used to quantify the interaction affinities between diffusing molecules by analyzing the fluctuations between two-color confocal images. Spectral crosstalk compromises the quantitative analysis of ccRICS experiments, limiting multicolor implementations to dyes with well-separated emission spectra. Here, we remove this restriction by introducing raster spectral image correlation spectroscopy (RSICS), which employs statistical filtering based on spectral information to quantitatively separate signals of fluorophores during spatial correlation analysis. We investigate the performance of RSICS by testing how different levels of spectral overlap or different relative signal intensities affect the correlation function and analyze the influence of statistical filter quality. We apply RSICS in vitro to resolve dyes with very similar emission spectra, and carry out RSICS in live cells to simultaneously analyze the diffusion of molecules carrying three different fluorescent protein labels (eGFP, Venus and mCherry). Finally, we successfully apply statistical weighting to data that was recorded with only a single detection channel per fluorophore, highlighting the general applicability of this method to data acquired with any type of multicolor detection. In conclusion, RSICS enables artifact-free quantitative analysis of concentrations, mobility and interactions of multiple species labeled with different fluorophores. It can be performed on commercial laser scanning microscopes, and the algorithm can be easily extended to other image correlation methods. Thus, RSICS opens the door to quantitative multicolor fluctuation analyses of complex (bio-) molecular systems.
Assuntos
Microscopia Intravital/métodos , Espectrometria de Fluorescência/métodos , Algoritmos , Artefatos , Cor , Difusão , Estudos de Viabilidade , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Células HEK293 , Humanos , Microscopia Intravital/instrumentação , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Razão Sinal-Ruído , Software , Espectrometria de Fluorescência/instrumentação , Coloração e Rotulagem/instrumentação , Coloração e Rotulagem/métodosRESUMO
Characterization of the membrane phases is a crucial task in cell biology. Cells differ in composition of the lipids and consequently in adopted phases. The phases can be discriminated based upon lipid ordering and molecular diffusion and their identification could be used for characterization of cell membranes. Here we used molecular dynamics (MD) simulations to study the behavior of the fluorescent reporter molecule diphenylhexatriene (DPH) in different lipid phases - liquid disordered (Ld), liquid ordered (Lo), and solid ordered (So) composed of phosphatidylcholines (Ld and So) or a sphingomyelin/cholesterol (SM/Chol) mixture (Lo). To the best of our knowledge, this is the first simulation of DPH in Lo SM/Chol and So DPPC membranes. For the considered membrane compositions DPH is mostly oriented parallel to lipid tails. In the Lo phase we observed a significant fraction of DPH positioned in between membrane leaflets, which agrees with experimental findings, but which has not been observed in previous MD simulations of DPH in phosphatidylcholine membranes. Further, we calculated rotational autocorrelation functions (ROTACF) from our MD simulations in order to model the time-resolved fluorescence anisotropy decay. We observed that order parameters P2 and P4 are sufficient to fully describe the orientation distribution of DPH. We analyzed the ROTACFs by a so-called general model for the time-resolved fluorescence anisotropy [W. van der Meer et al., Biophys. J., 1984, 46, 515] and observed an overestimation of P4. We suggest a rescaling of the recovered P4 yielding an orientation distribution of DPH close to the one observed in our MD simulations.
Assuntos
Difenilexatrieno/metabolismo , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Colesterol/química , Difenilexatrieno/química , Polarização de Fluorescência , Bicamadas Lipídicas/química , Modelos Teóricos , Fosfatidilcolinas/química , Esfingomielinas/químicaRESUMO
BACKGROUND: Human hematopoietic progenitor cells (HPCs) are important for cell therapy in cancer and tissue regeneration. In vitro studies have shown a transient association of 40 nm polystyrene nanoparticles (PS NPs) with these cells, which is of interest for intelligent design and application of NPs in HPC-based regenerative protocols. In this study, we aimed to investigate the involvement of nanoparticles' size and membrane-attached glycan molecules in the interaction of HPCs with PS NPs, and compared it with monocytes. Human cord blood-derived HPCs and THP-1 cells were exposed to fluorescently labelled, carboxylated PS NPs of 40, 100 and 200 nm. Time-dependent nanoparticle membrane association and/or uptake was observed by measuring fluorescence intensity of exposed cells at short time intervals using flow cytometry. By pretreating the cells with neuraminidase, we studied the possible effect of membrane-associated sialic acids in the interaction with NPs. Confocal microscopy was used to visualize the cell-specific character of the NP association. RESULTS: Confocal images revealed that the majority of PS NPs was initially observed to be retained at the outer membrane of HPCs, while the same NPs showed immediate internalization by THP-1 monocytic cells. After prolonged exposure up to 4 h, PS NPs were also observed to enter the HPCs' intracellular compartment. Cell-specific time courses of NP association with HPCs and THP-1 cells remained persistent after cells were enzymatically treated with neuraminidase, but significantly increased levels of NP association could be observed, suggesting a role for membrane-associated sialic acids in this process. CONCLUSIONS: We conclude that the terminal membrane-associated sialic acids contribute to the NP retention at the outer cell membrane of HPCs. This retention behavior is a unique characteristic of the HPCs and is independent of NP size.
Assuntos
Células-Tronco Hematopoéticas/metabolismo , Monócitos/metabolismo , Nanopartículas/química , Ácidos Siálicos/química , Antígenos CD34/metabolismo , Transporte Biológico , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/metabolismo , Endocitose/efeitos dos fármacos , Humanos , Tamanho da Partícula , Poliestirenos , Propriedades de SuperfícieRESUMO
BACKGROUND: Subtle DNA methylation alterations mediated by carbon nanotubes (CNTs) exposure might contribute to pathogenesis and disease susceptibility. It is known that both multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) interact with nucleus. Such, nuclear-CNT interaction may affect the DNA methylation effects. In order to understand the epigenetic toxicity, in particular DNA methylation alterations, of SWCNTs and short MWCNTs, we performed global/genome-wide, gene-specific DNA methylation and RNA-expression analyses after exposing human bronchial epithelial cells (16HBE14o- cell line). In addition, the presence of CNTs on/in the cell nucleus was evaluated in a label-free way using femtosecond pulsed laser microscopy. RESULTS: Generally, a higher number of SWCNTs, compared to MWCNTs, was deposited at both the cellular and nuclear level after exposure. Nonetheless, both CNT types were in physical contact with the nuclei. While particle type dependency was noticed for the identified genome-wide and gene-specific alterations, no global DNA methylation alteration on 5-methylcytosine (5-mC) sites was observed for both CNTs. After exposure to MWCNTs, 2398 genes were hypomethylated (at gene promoters), and after exposure to SWCNTs, 589 CpG sites (located on 501 genes) were either hypo- (N = 493 CpG sites) or hypermethylated (N = 96 CpG sites). Cells exposed to MWCNTs exhibited a better correlation between gene promoter methylation and gene expression alterations. Differentially methylated and expressed genes induced changes (MWCNTs > SWCNTs) at different cellular pathways, such as p53 signalling, DNA damage repair and cell cycle. On the other hand, SWCNT exposure showed hypermethylation on functionally important genes, such as SKI proto-oncogene (SKI), glutathione S-transferase pi 1 (GTSP1) and shroom family member 2 (SHROOM2) and neurofibromatosis type I (NF1), which the latter is both hypermethylated and downregulated. CONCLUSION: After exposure to both types of CNTs, epigenetic alterations may contribute to toxic or repair response. Moreover, our results suggest that the observed differences in the epigenetic response depend on particle type and differential CNT-nucleus interactions.
Assuntos
Brônquios/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Brônquios/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Nanotubos de Carbono/química , Tamanho da Partícula , Proto-Oncogene Mas , Relação Estrutura-Atividade , Propriedades de SuperfícieRESUMO
BACKGROUND: The continuously growing human exposure to combustion-derived particles (CDPs) drives in depth investigation of the involved complex toxicological mechanisms of those particles. The current study evaluated the hypothesis that CDPs could affect cell-induced remodeling of the extracellular matrix due to their underlying toxicological mechanisms. The effects of two ultrafine and one fine form of CDPs on human lung fibroblasts (MRC-5 cell line) were investigated, both in 2D cell culture and in 3D collagen type I hydrogels. A multi-parametric analysis was employed. RESULTS: In vitro dynamic 3D analysis of collagen matrices showed that matrix displacement fields induced by human lung fibroblasts are disturbed when exposed to carbonaceous particles, resulting in inhibition of matrix remodeling. In depth analysis using general toxicological assays revealed that a plausible explanation comprises a cascade of numerous detrimental effects evoked by the carbon particles, including oxidative stress, mitochondrial damage and energy storage depletion. Also, ultrafine particles revealed stronger toxicological and inhibitory effects compared to their larger counterparts. The inhibitory effects can be almost fully restored when treating the impaired cells with antioxidants like vitamin C. CONCLUSIONS: The unraveled in vitro pathway, by which ultrafine particles alter the fibroblasts' vital role of matrix remodeling, extends our knowledge about the contribution of these biologically active particles in impaired lung tissue repair mechanisms, and development and exacerbation of chronic lung diseases. The new insights may even pave the way to precautionary actions. The results provide justification for toxicological assessments to include mechanism-linked assays besides the traditional in vitro toxicological screening assays.
Assuntos
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Pulmão/citologia , Material Particulado/toxicidade , Trifosfato de Adenosina/metabolismo , Antioxidantes/metabolismo , Colágeno Tipo I/metabolismo , Matriz Extracelular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
RATIONALE: Ambient air pollution, including black carbon, entails a serious public health risk because of its carcinogenic potential and as climate pollutant. To date, an internal exposure marker for black carbon particles that have cleared from the systemic circulation into the urine does not exist. OBJECTIVES: To develop and validate a novel method to measure black carbon particles in a label-free way in urine. METHODS: We detected urinary carbon load in 289 children (aged 9-12 yr) using white-light generation under femtosecond pulsed laser illumination. Children's residential black carbon concentrations were estimated based on a high-resolution spatial temporal interpolation method. MEASUREMENTS AND MAIN RESULTS: We were able to detect urinary black carbon in all children, with an overall average (SD) of 98.2 × 105 (29.8 × 105) particles/ml. The urinary black carbon load was positively associated with medium-term to chronic (1 mo or more) residential black carbon exposure: +5.33 × 105 particles/ml higher carbon load (95% confidence interval, 1.56 × 105 to 9.10 × 105 particles/ml) for an interquartile range increment in annual residential black carbon exposure. Consistently, children who lived closer to a major road (≤160 m) had higher urinary black carbon load (6.93 × 105 particles/ml; 95% confidence interval, 0.77 × 105 to 13.1 × 105). CONCLUSIONS: Urinary black carbon mirrors the accumulation of medium-term to chronic exposure to combustion-related air pollution. This specific biomarker reflects internal systemic black carbon particles cleared from the circulation into the urine, allowing investigators to unravel the complexity of particulate-related health effects.
Assuntos
Poluentes Atmosféricos/urina , Poluição do Ar/estatística & dados numéricos , Carbono/urina , Biomarcadores/urina , Criança , Feminino , Humanos , Masculino , Reprodutibilidade dos TestesRESUMO
Fluorescence recovery after photobleaching (FRAP) is a versatile tool for determining diffusion and interaction/binding properties in biological and material sciences. An understanding of the mechanisms controlling the diffusion requires a deep understanding of structure-interaction-diffusion relationships. In cell biology, for instance, this applies to the movement of proteins and lipids in the plasma membrane, cytoplasm and nucleus. In industrial applications related to pharmaceutics, foods, textiles, hygiene products and cosmetics, the diffusion of solutes and solvent molecules contributes strongly to the properties and functionality of the final product. All these systems are heterogeneous, and accurate quantification of the mass transport processes at the local level is therefore essential to the understanding of the properties of soft (bio)materials. FRAP is a commonly used fluorescence microscopy-based technique to determine local molecular transport at the micrometer scale. A brief high-intensity laser pulse is locally applied to the sample, causing substantial photobleaching of the fluorescent molecules within the illuminated area. This causes a local concentration gradient of fluorescent molecules, leading to diffusional influx of intact fluorophores from the local surroundings into the bleached area. Quantitative information on the molecular transport can be extracted from the time evolution of the fluorescence recovery in the bleached area using a suitable model. A multitude of FRAP models has been developed over the years, each based on specific assumptions. This makes it challenging for the non-specialist to decide which model is best suited for a particular application. Furthermore, there are many subtleties in performing accurate FRAP experiments. For these reasons, this review aims to provide an extensive tutorial covering the essential theoretical and practical aspects so as to enable accurate quantitative FRAP experiments for molecular transport measurements in soft (bio)materials.
Assuntos
Fotodegradação , FluorescênciaRESUMO
Fibrillar collagen in tendons and its natural development in rabbits are discussed in this paper. Achilles tendons from newborn (~7 days) to elderly (~38 months) rabbits were monitored in intact (n tendons=24) and microtome sectioned (n tendons=11) states with label-free second harmonic generation microscopy. After sectioning, the collagen fiber pattern was irregular for the younger animals and remained oriented parallel to the load axis of the tendon for the older animals. In contrast, the collagen fiber pattern in the intact samples followed the load axis for all the age groups. However, there was a significant difference in the tendon crimp pattern appearance between the age groups. The crimp amplitude (A) and wavelength (Λ) started at very low values (A=2.0±0.6 µm, Λ=19±4 µm) for the newborn animals. Both parameters increased for the sexually mature animals (>5 months old). When the animals were fully mature the amplitude decreased but the wavelength kept increasing. The results revealed that the microtome sectioning artifacts depend on the age of animals and that the collagen crimp pattern reflects the physical growth and development.
Assuntos
Tendão do Calcâneo/ultraestrutura , Envelhecimento/fisiologia , Colágenos Fibrilares/ultraestrutura , Tendão do Calcâneo/citologia , Tendão do Calcâneo/crescimento & desenvolvimento , Animais , Fenômenos Biomecânicos/fisiologia , Matriz Extracelular/fisiologia , Colágenos Fibrilares/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia de Polarização , Coelhos , Resistência à Tração/fisiologiaRESUMO
Although adverse health effects of carbon black (CB) exposure are generally accepted, a direct, label-free approach for detecting CB particles in fluids and at the cellular level is still lacking. Here, we report nonincandescence related white-light (WL) generation by dry and suspended carbon black particles under illumination with femtosecond (fs) pulsed near-infrared light as a powerful tool for the detection of these carbonaceous materials. This observation is done for four different CB species with diameters ranging from 13 to 500 nm, suggesting this WL emission under fs near-infrared illumination is a general property of CB particles. As the emitted radiation spreads over the whole visible spectrum, detection is straightforward and flexible. The unique property of the described WL emission allows optical detection and unequivocal localization of CB particles in fluids and in cellular environments while simultaneously colocalizing different cellular components using various specific fluorophores as shown here using human lung fibroblasts. The experiments are performed on a typical multiphoton laser-scanning microscopy platform, widely available in research laboratories.
RESUMO
Plant growth promoting endophytic bacteria (PGPB) isolated from Brassica napus were inoculated in two cultivars of Helianthus tuberosus (VR and D19) growing on sand supplemented with 0.1 mM Cd or 1 mM Zn. Plant growth, concentrations of metals and thiobarbituric acid (TBA) reactive compounds were determined. Colonization of roots of H. tuberosus D19 by Pseudomonas sp. 262 was evaluated using confocal laser scanning microscopy. Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 significantly enhanced growth of H. tuberosus D19 exposed to Cd or Zn. Pseudomonas sp. 228 significantly increased Cd concentrations in roots. Serratia sp. 246, and Pseudomonas sp. 256 and 228 resulted in significantly decreased contents of TBA reactive compounds in roots of Zn exposed D19 plants. Growth improvement and decrease of metal-induced stress were more pronounced in D19 than in VR. Pseudomonas sp. 262-green fluorescent protein (GFP) colonized the root epidermis/exodermis and also inside root hairs, indicating that an endophytic interaction was established. H. tuberosus D19 inoculated with Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 holds promise for sustainable biomass production in combination with phytoremediation on Cd and Zn contaminated soils.