Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Bronconeumol (Engl Ed) ; 57(3): 186-194, 2021 Mar.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-32253119

RESUMO

INTRODUCTION: Primary ciliary dyskinesia (PCD) is characterized by an alteration in the ciliary structure causing difficulty in the clearance of respiratory secretions. Diagnosis is complex and based on a combination of techniques. The objective of this study was to design a gene panel including all known causative genes, and to corroborate their diagnostic utility in a cohort of Spanish patients. METHODS: This was a multicenter cross-sectional study of patients with a high suspicion of PCD, according to European Respiratory Society criteria, designed around a gene panel for massive sequencing using SeqCap EZ capture technology that included 44 genes associated with PCD. RESULTS: We included 79 patients, 53 of whom had a diagnosis of confirmed or highly probable PCD. The sensitivity of the gene panel was 81.1%, with a specificity of 100%. Candidate variants were found in some of the genes of the panel in 43 patients with PCD, 51.2% (22/43) of whom were homozygotes and 48.8% (21/43) compound heterozygotes. The most common causative genes were DNAH5 and CCDC39. We found 52 different variants, 36 of which were not previously described in the literature. CONCLUSIONS: The design and implementation of a tailored gene panel produces a high yield in the genetic diagnosis of PCD. This panel provides a better understanding of the causative factors involved in these patients and lays down the groundwork for future therapeutic approaches.


Assuntos
Síndrome de Kartagener , Estudos Transversais , Homozigoto , Humanos , Síndrome de Kartagener/diagnóstico , Mutação
2.
J Clin Med ; 9(11)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182294

RESUMO

Primary ciliary dyskinesia (PCD) is an autosomal recessive rare disease caused by an alteration of ciliary structure. Immunofluorescence, consisting in the detection of the presence and distribution of cilia proteins in human respiratory cells by fluorescence, has been recently proposed as a technique to improve understanding of disease-causing genes and diagnosis rate in PCD. The objective of this study is to determine the accuracy of a panel of four fluorescently labeled antibodies (DNAH5, DNALI1, GAS8 and RSPH4A or RSPH9) as a PCD diagnostic tool in the absence of transmission electron microscopy analysis. The panel was tested in nasal brushing samples of 74 patients with clinical suspicion of PCD. Sixty-eight (91.9%) patients were evaluable for all tested antibodies. Thirty-three cases (44.6%) presented an absence or mislocation of protein in the ciliary axoneme (15 absent and 3 proximal distribution of DNAH5 in the ciliary axoneme, 3 absent DNAH5 and DNALI1, 7 absent DNALI1 and cytoplasmatic localization of GAS8, 1 absent GAS8, 3 absent RSPH9 and 1 absent RSPH4A). Fifteen patients had confirmed or highly likely PCD but normal immunofluorescence results (68.8% sensitivity and 100% specificity). In conclusion, immunofluorescence analysis is a quick, available, low-cost and reliable diagnostic test for PCD, although it cannot be used as a standalone test.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA