RESUMO
SARS-CoV-2 variants of concern (VOCs) continue to evolve and reemerge with chronic inflammatory long COVID sequelae, necessitating the development of anti-inflammatory therapeutic molecules. Therapeutic effects of the receptor for advanced glycation end products (RAGE) were reported in many inflammatory diseases. However, a therapeutic effect of RAGE in COVID-19 has not been reported. In the present study, we investigated whether and how the RAGE-Ig fusion protein would have an antiviral and anti-inflammatory therapeutic effect in the COVID-19 system. The protective therapeutic effect of RAGE-Ig was determined in vivo in K18-hACE2 transgenic mice and Syrian golden hamsters infected with six VOCs of SARS-CoV-2. The underlying antiviral mechanism of RAGE-Ig was determined in vitro in SARS-CoV-2-infected human lung epithelial cells (BEAS-2B). Following treatment of K18-hACE2 mice and hamsters infected with various SARS-CoV-2 VOCs with RAGE-Ig, we demonstrated (1) significant dose-dependent protection (i.e., greater survival, less weight loss, lower virus replication in the lungs); (2) a reduction of inflammatory macrophages (F4/80+/Ly6C+) and neutrophils (CD11b+/Ly6G+) infiltrating the infected lungs; (3) a RAGE-Ig dose-dependent increase in the expression of type I IFNs (IFN-α and IFN-ß) and type III IFN (IFNλ2) and a decrease in the inflammatory cytokines (IL-6 and IL-8) in SARS-CoV-2-infected human lung epithelial cells; and (4) a dose-dependent decrease in the expression of CD64 (FcgR1) on monocytes and lung epithelial cells from symptomatic COVID-19 patients. Our preclinical findings revealed type I and III IFN-mediated antiviral and anti-inflammatory therapeutic effects of RAGE-Ig protein against COVID-19 caused by multiple SARS-CoV-2 VOCs.
Assuntos
COVID-19 , Melfalan , SARS-CoV-2 , gama-Globulinas , Cricetinae , Humanos , Camundongos , Animais , Mesocricetus , Receptor para Produtos Finais de Glicação Avançada/genética , Síndrome de COVID-19 Pós-Aguda , Camundongos Transgênicos , Antivirais/farmacologia , Antivirais/uso terapêutico , Modelos Animais de Doenças , PulmãoRESUMO
Following acute herpes simplex virus type 2 (HSV-2) infection, the virus undergoes an asymptomatic latent infection of sensory neurons of dorsal root ganglia (DRG). Chemical and physical stress cause intermittent virus reactivation from latently infected DRG and recurrent virus shedding in the genital mucosal epithelium causing genital herpes in symptomatic patients. While T cells appear to play a role in controlling virus reactivation from DRG and reducing the severity of recurrent genital herpes, the mechanisms for recruiting these T cells into DRG and the vaginal mucosa (VM) remain to be fully elucidated. The present study investigates the effect of CXCL9, CXCL10, and CXCL11 T-cell-attracting chemokines on the frequency and function of DRG- and VM-resident CD4+ and CD8+ T cells and its effect on the frequency and severity of recurrent genital herpes in the recurrent herpes guinea pig model. HSV-2 latent-infected guinea pigs were immunized intramuscularly with the HSV-2 ribonucleotide reductase 2 (RR2) protein (Prime) and subsequently treated intravaginally with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 chemokines to recruit CD4+ and CD8+ T cells into the infected DRG and VM (Pull). Compared to the RR2 therapeutic vaccine alone, the RR2/CXCL11 prime/pull therapeutic vaccine significantly increased the frequencies of functional tissue-resident and effector memory CD4+ and CD8+ T cells in both DRG and VM tissues. This was associated with less virus in the healed genital mucosal epithelium and reduced frequency and severity of recurrent genital herpes. These findings confirm the role of local DRG- and VM-resident CD4+ and CD8+ T cells in reducing virus shedding at the vaginal site of infection and the severity of recurrent genital herpes and propose the novel prime-pull vaccine strategy to protect against recurrent genital herpes.IMPORTANCEThe present study investigates the novel prime/pull therapeutic vaccine strategy to protect against recurrent genital herpes using the latently infected guinea pig model. In this study, we used the strategy that involves immunization of herpes simplex virus type 2-infected guinea pigs using a recombinantly expressed herpes tegument protein-ribonucleotide reductase 2 (RR2; prime), followed by intravaginal treatment with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 T-cell-attracting chemokines to recruit T cells into the infected dorsal root ganglia (DRG) and vaginal mucosa (VM) (pull). We show that the RR2/CXCL11 prime-pull therapeutic vaccine strategy elicited a significant reduction in virus shedding in the vaginal mucosa and decreased the severity and frequency of recurrent genital herpes. This protection was associated with increased frequencies of functional tissue-resident (TRM cells) and effector (TEM cells) memory CD4+ and CD8+ T cells infiltrating latently infected DRG tissues and the healed regions of the vaginal mucosa. These findings shed light on the role of tissue-resident and effector memory CD4+ and CD8+ T cells in DRG tissues and the VM in protection against recurrent genital herpes and propose the prime-pull therapeutic vaccine strategy in combating genital herpes.
Assuntos
Quimiocina CXCL11 , Herpes Genital , Herpesvirus Humano 2 , Ribonucleotídeo Redutases , Animais , Feminino , Cobaias , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL11/imunologia , Quimiocina CXCL11/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/imunologia , Gânglios Espinais/virologia , Herpes Genital/imunologia , Herpes Genital/prevenção & controle , Herpesvirus Humano 2/imunologia , Células T de Memória/imunologia , Ribonucleotídeo Redutases/metabolismo , Vacinação , Vagina/virologia , Vagina/imunologiaRESUMO
[This corrects the article DOI: 10.1371/journal.ppat.1010952.].
RESUMO
Four major mucosal-associated chemokines, CCL25, CCL28, CXCL14, and CXCL17, play an important role in protecting mucosal surfaces from infectious pathogens. However, their role in protection against genital herpes remains to be fully explored. The CCL28 is a chemoattractant for the CCR10 receptor-expressing immune cells and is produced homeostatically in the human vaginal mucosa (VM). In this study, we investigated the role of the CCL28/CCR10 chemokine axis in mobilizing protective antiviral B and T cell subsets into the VM site of herpes infection. We report a significant increase in the frequencies of HSV-specific memory CCR10+CD44+CD8+ T cells, expressing high levels of CCR10, in herpes-infected asymptomatic (ASYMP) women compared with symptomatic women. Similarly, a significant increase in the CCL28 chemokine (a ligand of CCR10), was detected in the VM of herpes-infected ASYMP C57BL/6 mice, associated with the mobilization of high frequencies of HSV-specific effector memory CCR10+CD44+CD62L-CD8+ TEM cells and memory CCR10+B220+CD27+ B cells in the VM of HSV-infected ASYMP mice. Inversely, compared with wild-type C57BL/6 mice, the CCL28 knockout (CCL28-/-) mice (1) appeared to be more susceptible to intravaginal infection and reinfection with HSV type 2, and (2) exhibited a significant decrease in the frequencies of HSV-specific effector memory CCR10+CD44+CD62L-CD8+ TEM cells and of memory CD27+B220+ B cells in the infected VM. These findings suggest a critical role of the CCL28/CCR10 chemokine axis in the mobilization of antiviral memory B and T cells within the VM to protect against genital herpes infection and disease.
Assuntos
Herpes Genital , Humanos , Feminino , Camundongos , Animais , Antivirais/metabolismo , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos , Herpesvirus Humano 2 , Mucosa , Fatores de Restrição Antivirais , Receptores CCR10/metabolismo , Quimiocinas CC/metabolismo , Receptores de Hialuronatos/metabolismoRESUMO
Mitotic kinetochores are initially captured by dynamic microtubules via a "search-and-capture" mechanism. The microtubule motor, dynein, is critical for kinetochore capture as it has been shown to transport microtubule-attached chromosomes toward the spindle pole during prometaphase. The microtubule-binding nuclear division cycle 80 (Ndc80) complex that is recruited to kinetochores in prophase is known to play a central role in forming kinetochore-microtubule (kMT) attachments in metaphase. It is not yet clear, however, how Ndc80 contributes to initial kMT capture during prometaphase. Here, by combining CRISPR/Cas9-mediated knockout and RNAi technology with assays specific to study kMT capture, we show that mitotic cells lacking Ndc80 exhibit substantial defects in this function during prometaphase. Rescue experiments show that Ndc80 mutants deficient in microtubule-binding are unable to execute proper kMT capture. While cells inhibited of dynein alone are predominantly able to make initial kMT attachments, cells co-depleted of Ndc80 and dynein show severe defects in kMT capture. Further, we use an in vitro total internal reflection fluorescence microscopy assay to reconstitute microtubule capture events, which suggest that Ndc80 and dynein coordinate with each other for microtubule plus-end capture and that the phosphorylation status of Ndc80 is critical for productive kMT capture. A novel interaction between Ndc80 and dynein that we identify in prometaphase extracts might be critical for efficient plus-end capture. Thus, our studies, for the first time, identify a distinct event in the formation of initial kMT attachments, which is directly mediated by Ndc80 and in coordination with dynein is required for efficient kMT capture and chromosome alignment.
Assuntos
Dineínas , Cinetocoros , Dineínas/genética , Dineínas/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Microtúbulos/metabolismo , Mitose , Fuso Acromático/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismoRESUMO
To address the problem of increased antimicrobial resistance, we developed a glycoconjugate vaccine comprised of O-polysaccharides (OPS) of the four most prevalent serotypes of Klebsiella pneumoniae (KP) linked to recombinant flagellin types A and B (rFlaA and rFlaB) of Pseudomonas aeruginosa (PA). Flagellin is the major subunit of the flagellar filament. Flagella A and B, essential virulence factors for PA, are glycosylated with different glycans. We previously reported that while both rFlaA and rFlaB were highly immunogenic, only the rFlaB antisera reduced PA motility and protected mice from lethal PA infection in a mouse model of thermal injury. Since recombinant flagellin is not glycosylated, we examined the possibility that the glycan on native FlaA (nFlaA) might be critical to functional immune responses. We compared the ability of nFlaA to that of native, deglycosylated FlaA (dnFlaA) to induce functionally active antisera. O glycan was removed from nFlaA with trifluoromethanesulfonic acid. Despite the similar high-titered anti-FlaA antibody levels elicited by nFlaA, rFlaA, and dnFlaA, only the nFlaA antisera inhibited PA motility and protected mice following lethal intraperitoneal bacterial challenge. Both the protective efficacy and carrier protein function of nFlaA were retained when conjugated to KP O1 OPS. We conclude that unlike the case with FlaB O glycan, the FlaA glycan is an important epitope for the induction of functionally active anti-FlaA antibodies.
Assuntos
Flagelina , Pseudomonas aeruginosa , Camundongos , Animais , Flagelina/metabolismo , Anticorpos , Klebsiella pneumoniae , Polissacarídeos , Flagelos/metabolismo , Soros ImunesRESUMO
IMPORTANCE: Although the current rate of SARS-CoV-2 infections has decreased significantly, COVID-19 still ranks very high as a cause of death worldwide. As of October 2023, the weekly mortality rate is still at 600 deaths in the United States alone, which surpasses even the worst mortality rates recorded for influenza. Thus, the long-term outlook of COVID-19 is still a serious concern outlining the need for the next-generation vaccine. This study found that a prime/pull coronavirus vaccine strategy increased the frequency of functional SARS-CoV-2-specific CD4+ and CD8+ memory T cells in the lungs of SARS-CoV-2-infected triple transgenic HLA-DR*0101/HLA-A*0201/hACE2 mouse model, thereby resulting in low viral titer and reduced COVID-19-like symptoms.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL11/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Epitopos , Pulmão/imunologia , Pulmão/virologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus , Modelos Animais de DoençasRESUMO
Antibiotic resistance is a leading cause of hospitalization and death worldwide. Heavy metals such as arsenic have been shown to drive co-selection of antibiotic resistance, suggesting arsenic-contaminated drinking water is a risk factor for antibiotic resistance carriage. This study aimed to determine the prevalence and abundance of antibiotic-resistant Escherichia coli (AR-Ec) among people and drinking water in high (Hajiganj, >100 µg/L) and low arsenic-contaminated (Matlab, <20 µg/L) areas in Bangladesh. Drinking water and stool from mothers and their children (<1 year) were collected from 50 households per area. AR-Ec was detected via selective culture plating and isolates were tested for antibiotic resistance, arsenic resistance, and diarrheagenic genes by PCR. Whole-genome sequencing (WGS) analysis was done for 30 E. coli isolates from 10 households. Prevalence of AR-Ec was significantly higher in water in Hajiganj (48%) compared to water in Matlab (22%, p <0.05) and among children in Hajiganj (94%) compared to children in Matlab (76%, p <0.05), but not among mothers. A significantly higher proportion of E. coli isolates from Hajiganj were multidrug-resistant (83%) compared to isolates from Matlab (71%, p <0.05). Co-resistance to arsenic and multiple antibiotics (MAR index >0.2) was observed in a higher proportion of water (78%) and child stool (100%) isolates in Hajiganj than in water (57%) and children (89%) in Matlab (p <0.05). The odds of arsenic-resistant bacteria being resistant to third-generation cephalosporin antibiotics were higher compared to arsenic-sensitive bacteria (odds ratios, OR 1.2-7.0, p <0.01). WGS-based phylogenetic analysis of E. coli isolates did not reveal any clustering based on arsenic exposure and no significant difference in resistome was found among the isolates between the two areas. The positive association detected between arsenic exposure and antibiotic resistance carriage among children in arsenic-affected areas in Bangladesh is an important public health concern that warrants redoubling efforts to reduce arsenic exposure.
Assuntos
Arsênio , Água Potável , Criança , Humanos , Escherichia coli/genética , Antibacterianos/farmacologia , Arsênio/farmacologia , FilogeniaRESUMO
The development of ecofriendly fabrication phenomenon is essential requirement for commercialization of non-fullerene acceptors. Recently, end-capped modeling is employed for computational design of five non-fullerene acceptors to elevate various photovoltaic properties. All new molecules are formulated by altering the peripheral acceptors of CH3-2F and DFT methodology is employed to explore the opto-electronic, morphological and charge transfer analysis. From the computational investigation, all reported molecules manifested red shifted absorption with remarkable reduced band gap. Among investigated molecules, FA1-FA3 evinced effectively decreased value of band gaps and designed molecules have low excitation energy justifying proficient charge transference. The lower values of binding energy of FA1 and FA2 suggest their facile exciton dissociation leading to improved charge mobility. By blending with J61 donor, FA4 have sufficiently enhanced value of VOC (1.72 eV) and fill factor (0.9228). Energy loss of the model (R) is 0.57 eV and statistical calculation demonstrate that all our modified molecules except FA3 has profoundly reduced energy loss compelling in its pivotal utilization. From accessible supportive outcomes of recent investigation, it is recommended that our modified chromophore exhibit remarkable noteworthy applications in solar cells for forthcoming innovations.
RESUMO
As a critical cause of human dysfunctionality, hepatic failure leads to approximately two million deaths per year and is on the rise. Considering multiple inflammatory, oxidative, and apoptotic mechanisms behind hepatotoxicity, it urges the need for finding novel multi-targeting agents. Curcumin is a phenolic compound with anti-inflammatory, antioxidant, and anti-apoptotic roles. Curcumin possesses auspicious health benefits and protects against several diseases with exceptional safety and tolerability. This review focused on the hepatoprotective mechanisms of curcumin. The need to develop novel delivery systems of curcumin (e.g., nanoparticles, self-micro emulsifying, lipid-based colloids, solid lipid nanoparticles, cyclodextrin inclusion, phospholipid complexes, and nanoemulsions) is also considered.
Assuntos
Curcumina , Curcumina/farmacologia , Curcumina/química , Humanos , Animais , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Antioxidantes/farmacologia , Antioxidantes/química , Fígado/efeitos dos fármacos , Fígado/patologia , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Nanopartículas , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacosRESUMO
A significant cause of shigellosis in Bangladesh and other developing countries is Shigella flexneri serotype 6. This serotype has been subtyped, on the basis of the absence or presence of a group-specific antigen, E1037, into S. flexneri 6a and 6b, respectively. Here, we provided rationales for the subclassification, using several phenotypic and molecular tools. A set of S. flexneri 6a and 6b strains isolated between 1997 and 2015 were characterized by analyzing their biochemical properties, plasmid profiles, virulence markers, pulsed-field gel electrophoresis (PFGE) results, and ribotype. Additionally, the genomic relatedness of these subserotypes was investigated with global isolates of serotype 6 using publicly available genomes. Both subserotypes of S. flexneri 6 agglutinated with monoclonal antiserum against S. flexneri (MASF) B and type VI-specific antiserum (MASF VI) and were PCR positive for O-antigen flippase-specific genes and virulence markers (ipaH, ial, sen, and sigA). Unlike S. flexneri 6a strains, S. flexneri 6b strains seroagglutinated with anti-E1037 antibodies, MASF IV-I. Notably, these two antigenically distinct subserotypes were clonally diverse, showing two distinct PFGE patterns following the digestion of chromosomal DNA with either XbaI or IceuI. In addition, hybridization of a 16S rRNA gene probe with HindIII-digested genomic DNA yielded two distinguishing ribotypes. Genomic comparison of S. flexneri subserotype 6a and 6b strains from Bangladesh indicated that, although these strains were in genomic synteny, the majority of them formed a unique phylogroup (PG-4) that was missing for the global isolates. This study supports the subserotyping and emphasizes the need for global monitoring of the S. flexneri subserotypes 6a and 6b. IMPORTANCE Shigella flexneri serotype 6 is one of the predominant serotypes among shigellosis cases in Bangladesh. Characterization of a novel subserotype of S. flexneri 6 (VI:E1037), agglutinated with type 6-specific antibody and anti-E1037, indicates a unique evolutionary ancestry. PFGE genotyping supports the finding that these two antigenically distinct subserotypes are clonally diverse. A phylogenetic study based on single-nucleotide polymorphism (SNP) data revealed that these two subserotypes were in genomic synteny, although their genomes were reduced. Interestingly, a majority of the S. flexneri 6 strains isolated from Bangladesh form a novel phylogenetic cluster. Therefore, this report underpins the global monitoring and tracking of the novel subserotype.
Assuntos
Disenteria Bacilar , Shigella flexneri , Humanos , Sorogrupo , Shigella flexneri/genética , Sorotipagem/métodos , Filogenia , Bangladesh/epidemiologia , RNA Ribossômico 16SRESUMO
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.
RESUMO
The increasing demand for searching highly efficient and robust technologies in the context of sustainable energy production totally rely onto the cost-effective energy efficient production technologies. Solar power technology in this regard will perceived to be extensively employed in a variety of ways in the future ahead, in terms of the combustion of petroleum-based pollutants, CO2 reduction, heterogeneous photocatalysis, as well as the formation of unlimited and sustainable hydrogen gas production. Semiconductor-based photocatalysis is regarded as potentially sustainable solution in this context. g-C3 N4 is classified as non-metallic semiconductor to overcome this energy demand and enviromental challenges, because of its superior electronic configuration, which has a median band energy of around 2.7â eV, strong photocatalytic stability, and higher light performance. The photocatalytic performance of g-C3 N4 is perceived to be inadequate, owing to its small surface area along with high rate of charge recombination. However, various synthetic strategies were applied in order to incorporate g-C3 N4 with different guest materials to increase photocatalytic performance. After these fabrication approaches, the photocatalytic activity was enhanced owing to generation of photoinduced electrons and holes, by improving light absorption ability, and boosting surface area, which provides more space for photocatalytic reaction. In this review, various metals, non-metals, metals oxide, sulfides, and ferrites have been integrated with g-C3 N4 to form mono, bimetallic, heterojunction, Z-scheme, and S-scheme-based materials for boosting performance. Also, different varieties of g-C3 N4 were utilized for different aspects of photocatalytic application i. e., water reduction, water oxidation, CO2 reduction, and photodegradation of dye pollutants, etc. As a consequence, we have assembled a summary of the latest g-C3 N4 based materials, their uses in solar energy adaption, and proper management of the environment. This research will further well explain the detail of the mechanism of all these photocatalytic processes for the next steps, as well as the age number of new insights in order to overcome the current challenges.
RESUMO
Developing cost-efficient and noble metal free electrocatalysts is vastly anticipated for the oxygen evolution reaction (OER). Therefore, in this study, to lift the thermodynamic and kinetic activity of the OER, we attempted to synthesize a bimetallic nickel and manganese-based zeolite imidazolate framework system in a fiber form. For this synthesis, a bottom-up approach has been followed through wet chemical analysis, and electrospinning was utilized for fiber formation. The resultant fiber has shown a lesser overpotential of 256 mV at a benchmarking current density of 10 mA cm-2 under 1 M KOH conditions. As expected, the attained Tafel slope and charge transfer resistance values are lesser. The observed results reveal that the synergism between the Ni and Mn nodes on the imidazolate framework successfully promotes the thermodynamic formation of *O and *OOH intermediates, which significantly helps to improve the faster OER kinetics at the electrode-electrolyte interface.
RESUMO
The present study established thirteen novel 8-hydroxyquinoline/chalcone hybrids3a-mof hopeful anticancer activity. According to NCI screening and MTT assay results, compounds3d-3f, 3i,3k,and3ldisplayed potent growth inhibition on HCT116 and MCF7 cells compared to Staurosporine. Among these compounds,3eand3fshowed outstanding superior activity against HCT116 and MCF7 cells and better safety toward normal WI-38 cells than Staurosporine. The enzymatic assay revealed that3e,3d, and3ihad goodtubulin polymerization inhibition (IC50 = 5.3, 8.6, and 8.05 µM, respectively) compared to the reference Combretastatin A4 (IC50 = 2.15 µM). Moreover,3e,3l, and3fexhibited EGFR inhibition (IC50 = 0.097, 0.154, and 0.334 µM, respectively) compared to Erlotinib (IC50 = 0.056 µM). Compounds3eand3fwere investigated for their effects on the cell cycle, apoptosis induction, andwnt1/ß-cateningene suppression. The apoptosis markers Bax, Bcl2, Casp3, Casp9, PARP1, and ß-actin were detected by Western blot. In-silico molecular docking, physicochemical, and pharmacokinetic studies were implemented for the validation of dual mechanisms and other bioavailability standards. Hence, Compounds3eand3fare promising antiproliferative leads with tubulin polymerization and EGFR kinase inhibition.
Assuntos
Antineoplásicos , Chalcona , Chalconas , Humanos , Simulação de Acoplamento Molecular , Chalcona/química , Chalconas/farmacologia , Tubulina (Proteína)/metabolismo , Relação Estrutura-Atividade , Oxiquinolina/farmacologia , Estaurosporina/farmacologia , Apoptose , Moduladores de Tubulina , Antineoplásicos/química , Receptores ErbB , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Estrutura MolecularRESUMO
Electrolytes are one of the most influential aspects determining the efficiency of electrochemical supercapacitors. Therefore, in this paper, we investigate the effect of introducing co-solvents of ester into ethylene carbonate (EC). The use of ester co-solvents in ethylene carbonate (EC) as an electrolyte for supercapacitors improves conductivity, electrochemical properties, and stability, allowing greater energy storage capacity and increased device durability. We synthesized extremely thin nanosheets of niobium silver sulfide using a hydrothermal process and mixed them with magnesium sulfate in different wt% ratios to produce Mg(NbAgS)x)(SO4)y. The synergistic effect of MgSO4 and NbS2 increased the storage capacity and energy density of the supercapattery. Multivalent ion storage in Mg(NbAgS)x(SO4)y enables the storage of a number of ions. The Mg(NbAgS)x)(SO4)y was directly deposited on a nickel foam substrate using a simple and innovative electrodeposition approach. The synthesized silver Mg(NbAgS)x)(SO4)y provided a maximum specific capacity of 2087 C/g at 2.0 A/g current density because of its substantial electrochemically active surface area and linked nanosheet channels which aid in ion transportation. The supercapattery was designed with Mg(NbAgS)x)(SO4)y and activated carbon (AC) achieved a high energy density of 79 Wh/kg in addition to its high power density of 420 W/kg. The supercapattery (Mg(NbAgS)x)(SO4)y//AC) was subjected to 15,000 consecutive cycles. The Coulombic efficiency of the device was 81% after 15,000 consecutive cycles while retaining a 78% capacity retention. This study reveals that the use of this novel electrode material (Mg(NbAgS)x(SO4)y) in ester-based electrolytes has great potential in supercapattery applications.
RESUMO
BACKGROUND: Methods for the multiview clustering and integration of multi-omics data have been developed recently to solve problems caused by data noise or limited sample size and to integrate multi-omics data with consistent (common) and differential cluster patterns. However, the integration of such data still suffers from limited performance and low accuracy. RESULTS: In this study, a computational framework for the multiview clustering method based on the penalty model is presented to overcome the challenges of low accuracy and limited performance in the case of integrating multi-omics data with consistent (common) and differential cluster patterns. The performance of the proposed method was evaluated on synthetic data and four real multi-omics data and then compared with approaches presented in the literature under different scenarios. Result implies that our method exhibits competitive performance compared with recently developed techniques when the underlying clusters are consistent with synthetic data. In the case of the differential clusters, the proposed method also presents an enhanced performance. In addition, with regards to real omics data, the developed method exhibits better performance, demonstrating its ability to provide more detailed information within each data type and working better to integrate multi-omics data with consistent (common) and differential cluster patterns. This study shows that the proposed method offers more significant differences in survival times across all types of cancer. CONCLUSIONS: A new multiview clustering method is proposed in this study based on synthetic and real data. This method performs better than other techniques previously presented in the literature in terms of integrating multi-omics data with consistent and differential cluster patterns and determining the significance of difference in survival times.
Assuntos
Neoplasias , Análise por Conglomerados , Humanos , Tamanho da AmostraRESUMO
Metal-organic frameworks (MOFs) have potential applications in removing pollutants such as heavy metals, oils, and toxins from water. However, due to the intrinsic fragility of MOFs and their fine powder form, there are still technical barriers to their practical application such as blockage of pipes, difficulty in recovery, and potential environmental toxicity. Therefore, attention has focused on approaches to convert nanocrystalline MOFs into macroscopic materials to overcome these limitations. Recently, strategies for shaping MOFs into beads (0D), nanofibers (1D), membranes (2D), and gels/sponges (3D) with macrostructures are developed including direct mixing, in situ growth, or deposition of MOFs with polymers, cotton, foams or other porous substrates. In this review, successful strategies for the fabrication of macroscopic materials from MOFs and their applications in removing pollutants from water including adsorption, separation, and advanced oxidation processes, are discussed. The relationship between the macroscopic performance and the microstructure of materials, and how the range of 0D to 3D macroscopic materials can be used for water treatment are also outlined.
Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Metais Pesados , Purificação da Água , Adsorção , Estruturas Metalorgânicas/química , Metais Pesados/químicaRESUMO
Controlling the morphology, composition, and crystalline phase of mesoporous nonnoble metal catalysts is essential for improving their performance. Herein, well-defined P- and B-codoped NiFe alloy mesoporous nanospheres (NiFeB-P MNs) with an adjustable Ni/Fe ratio and large mesopores (11 nm) are synthesized via soft-template-based chemical reduction and a subsequent phosphine-vapor-based phosphidation process. Earth-abundant NiFe-based materials are considered promising electrocatalysts for the oxygen evolution reaction (OER) because of their low cost and high intrinsic catalytic activity. The resulting NiFeB-P MNs exhibit a low OER overpotential of 252 mV at 10 mA cm-2 , which is significantly smaller than that of B-doped NiFe MNs (274 mV) and commercial RuO2 (269 mV) in alkaline electrolytes. Thus, this work highlights the practicality of designing mesoporous nonnoble metal structures and the importance of incorporating P in metallic-B-based alloys to modify their electronic structure for enhancing their intrinsic activity.
RESUMO
The integration of nanoarchitectonics and hydrogel into conventional biosensing platforms offers the opportunities to design physically and chemically controlled and optimized soft structures with superior biocompatibility, better immobilization of biomolecules, and specific and sensitive biosensor design. The physical and chemical properties of 3D hydrogel structures can be modified by integrating with nanostructures. Such modifications can enhance their responsiveness to mechanical, optical, thermal, magnetic, and electric stimuli, which in turn can enhance the practicality of biosensors in clinical settings. This review describes the synthesis and kinetics of gel networks and exploitation of nanostructure-integrated hydrogels in biosensing. With an emphasis on different integration strategies of hydrogel with nanostructures, this review highlights the importance of hydrogel nanostructures as one of the most favorable candidates for developing ultrasensitive biosensors. Moreover, hydrogel nanoarchitectonics are also portrayed as a promising candidate for fabricating next-generation robust biosensors.