RESUMO
The growing presence of emerging pollutants (EPs) in aquatic environments, as well as their harmful impacts on the biosphere and humans, has become a global concern. Recent developments and advancements in pharmaceuticals, agricultural practices, industrial activities, and human personal care substances have paved the way for drastic changes in EP concentrations and impacts on the ecosystem. As a result, it is critical to mitigate EP's harmful effects before they jeopardize the ecological equilibrium of the overall ecosystem and the sustainable existence of life on Earth. This review comprehensively documented the types, origins, and remediation strategies of EPs, and underscored the significance of this study in the current context. We briefly stated the major classification of EPs based on their organic and inorganic nature. Furthermore, this review systematically evaluates the occurrence of EPs due to the fast-changing ecological scenarios and their impact on human health. Recent studies have critically discussed the emerging physical and chemical processes for EP removal, highlighting the limitations of conventional remediation technologies. We reviewed and presented the challenges associated with EP remediation and degradation using several methods, including physical and chemical methods, with the application of recent technologies. The EP types and various methods discussed in this review help the researchers understand the nature of present-day EPs and utilize an efficient method of choice for EP removal and management in the future for sustainable life and development activities on the planet.
Assuntos
Recuperação e Remediação Ambiental , Recuperação e Remediação Ambiental/métodos , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Humanos , Biodegradação AmbientalRESUMO
As the population is increasing at a rapid pace, we now find ourselves in a position where cities are using a growing amount of renewable energy. Renewable energy is the key to help avert climate change and this approach must be sustainable. At the juncture, this review analyses the potential of wind, biomass and hybrid systems in the field of renewable energy production. Initially, the manuscript addressed the feedstocks and their potential for different biofuels such as bioethanol, biodiesel, biomethane, biohydrogen and biohythane from the biomass. With a focus on long-term energy sustainability, this article investigates performance analysis and sustainability of wind energy systems and biomass-based hybrid configurations with wind and its various design factors, problems, and gaps were examined. According to the findings, biomass-based hybrid energy systems can provide a cost-effective and environmentally beneficial alternative, particularly for off-grid rural electrification. The study provides designers, academicians, and policymakers with vital information on the most recent design restrictions and other factors related to biomass-wind hybrid energy systems.