Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 630(8017): 636-642, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811732

RESUMO

Chemical vapour deposition (CVD) synthesis of graphene on copper has been broadly adopted since the first demonstration of this process1. However, widespread use of CVD-grown graphene for basic science and applications has been hindered by challenges with reproducibility2 and quality3. Here we identify trace oxygen as a key factor determining the growth trajectory and quality for graphene grown by low-pressure CVD. Oxygen-free chemical vapour deposition (OF-CVD) synthesis is fast and highly reproducible, with kinetics that can be described by a compact model, whereas adding trace oxygen leads to suppressed nucleation and slower/incomplete growth. Oxygen affects graphene quality as assessed by surface contamination, emergence of the Raman D peak and decrease in electrical conductivity. Epitaxial graphene grown in oxygen-free conditions is contamination-free and shows no detectable D peak. After dry transfer and boron nitride encapsulation, it shows room-temperature electrical-transport behaviour close to that of exfoliated graphene. A graphite-gated device shows well-developed integer and fractional quantum Hall effects. By highlighting the importance of eliminating trace oxygen, this work provides guidance for future CVD system design and operation. The increased reproducibility and quality afforded by OF-CVD synthesis will broadly influence basic research and applications of graphene.

2.
Bioengineering (Basel) ; 11(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38927778

RESUMO

The characterization of individual cells within heterogeneous populations (e.g., rare tumor cells in healthy blood cells) has a great impact on biomedical research. To investigate the properties of these specific cells, such as genetic biomarkers and/or phenotypic characteristics, methods are often developed for isolating rare cells among a large number of background cells before studying their genetic makeup and others. Prior to using real-world samples, these methods are often evaluated and validated by spiking cells of interest (e.g., tumor cells) into a sample matrix (e.g., healthy blood) as model samples. However, spiking tumor cells at extremely low concentrations is challenging in a standard laboratory setting. People often circumvent the problem by diluting a solution of high-concentration cells, but the concentration becomes inaccurate after series dilution due to the fact that a cell suspension solution can be inhomogeneous, especially when the cell concentration is very low. We report on an alternative method for low-cost, accurate, and reproducible low-concentration cell spiking without the use of external pumping systems. By inducing a capillary force from sudden pressure drops, a small portion of the cellular membrane was aspirated into the reservoir tip, allowing for non-destructive single-cell transfer. We investigated the surface membrane tensions induced by cellular aspiration and studied a range of tip/tumor cell diameter combinations, ensuring that our method does not affect cell viability. In addition, we performed single-cell capture and transfer control experiments using human acute lymphoblastic leukemia cells (CCRF-CEM) to develop calibrated data for the general production of low-concentration samples. Finally, we performed affinity-based tumor cell isolation using this method to generate accurate concentrations ranging from 1 to 15 cells/mL.

3.
ACS Nano ; 18(26): 17111-17118, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952326

RESUMO

Establishing reliable electrical contacts to atomically thin materials is a prerequisite for both fundamental studies and applications yet remains a challenge. In particular, the development of contact techniques for air-sensitive monolayers has lagged behind, despite their unique properties and significant potential for applications. Here, we present a robust method to create contacts to device layers encapsulated within hexagonal boron nitride (hBN). This method uses plasma etching and metal deposition to create 'vias' in the hBN with graphene forming an atomically thin etch-stop. The resulting partially fluorinated graphene (PFG) protects the underlying device layer from air-induced degradation and damage during metal deposition. PFG is resistive in-plane but maintains high out-of-plane conductivity. The work function of the PFG/metal contact is tunable through the degree of fluorination, offering opportunities for contact engineering. Using the in situ via technique, we achieve ambipolar contact to air-sensitive monolayer 2H-molybdenum ditelluride (MoTe2) with more than 1 order of magnitude improvement in on-current density compared to previous literature. The complete encapsulation provides high reproducibility and long-term stability. The technique can be extended to other air-sensitive materials as well as air-stable materials, offering highly competitive device performance.

4.
ACS Nano ; 18(5): 4118-4130, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38261768

RESUMO

Waveguides play a key role in the implementation of on-chip optical elements and, therefore, lie at the heart of integrated photonics. To add the functionalities of layered materials to existing technologies, dedicated fabrication protocols are required. Here, we build on laser writing to pattern grating structures into bulk noncentrosymmetric transition metal dichalcogenides with grooves as sharp as 250 nm. Using thin flakes of 3R-MoS2 that act as waveguides for near-infrared light, we demonstrate the functionality of the grating couplers with two complementary experiments: first, nano-optical imaging is used to visualize transverse electric and magnetic modes, whose directional outcoupling is captured by finite element simulations. Second, waveguide second-harmonic generation is demonstrated by grating-coupling femtosecond pulses into the slabs in which the radiation partially undergoes frequency doubling throughout the propagation. Our work provides a straightforward strategy for laser patterning of van der Waals crystals, demonstrates the feasibility of compact frequency converters, and examines the tuning knobs that enable optimized coupling into layered waveguides.

5.
Sci Rep ; 10(1): 14210, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848184

RESUMO

The methods for isolating rare cells such as circulating tumor cells (CTCs) can be generally classified into two categories: those based on physical properties (e.g., size) and methods based on biological properties (e.g., immunoaffinity). CellSearch, the only FDA-approved method for the CTC-based cancer prognosis, relies on immunoaffinity interactions between CTCs and antibodies immobilized on magnetic particles. Immunoaffinity-based CTC isolation has also been employed in microfluidic devices, which show higher capture efficiency than CellSearch. We report here our investigation of combining size-based microfiltration into a microfluidic device with immunoaffinity for enhanced capture efficiency of CTCs. The device consists of four serpentine main channels, and each channel contains an array of lateral filters that create a two-dimensional flow. The main flow is through the serpentine channel, allowing the majority of the sample to pass by while the secondary flow goes through the lateral filters. The device design is optimized to make all fluid particles interact with filters. The filter sizes range from 24 to 12 µm, being slightly larger than or having similar dimension of CTCs. These filters are immobilized with antibodies specific to CTCs and thus they function as gates, allowing normal blood cells to pass by while forcing the interactions between CTCs and antibodies on the filter surfaces. The hydrodynamic force experienced by a CTC was also studied for optimal experimental conditions to ensure immunoaffinity-enabled cell capture. The device was evaluated by capturing two types of tumor cells spiked in healthy blood or a buffer, and we found that their capture efficiency was between 87.2 and 93.5%. The platform was further validated by isolating CTCs from blood samples of patients with metastatic pancreatic cancer.


Assuntos
Separação Celular/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Células Neoplásicas Circulantes , Humanos , Células MCF-7 , Neoplasias Pancreáticas/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA