RESUMO
Although the strigolactone (SL) signaling pathway and SL-mediated anthocyanin biosynthesis have been reported, the molecular association between SL signaling and anthocyanin biosynthesis remains unclear. In this study, we identified the SL signal transduction pathway associated with anthocyanin biosynthesis and the crosstalk between gibberellin (GA) and SL signaling in apple (Malus × domestica). ELONGATED HYPOCOTYL5 (HY5) acts as a key node integrating SL signaling and anthocyanin biosynthesis, and the SL-response factor AGAMOUS-LIKE MADS-BOX9 (AGL9) promotes anthocyanin biosynthesis by activating HY5 transcription. The SL signaling repressor SUPPRESSOR OF MAX2 1-LIKE8 (SMXL8) interacts with AGL9 to form a complex that inhibits anthocyanin biosynthesis by downregulating HY5 expression. Moreover, the E3 ubiquitin ligase PROTEOLYSIS1 (PRT1) mediates the ubiquitination-mediated degradation of SMXL8, which is a key part of the SL signal transduction pathway associated with anthocyanin biosynthesis. In addition, the GA signaling repressor REPRESSOR-of-ga1-3-LIKE2a (RGL2a) mediates the crosstalk between GA and SL by disrupting the SMXL8-AGL9 interaction that represses HY5 transcription. Taken together, our study reveals the regulatory mechanism of SL-mediated anthocyanin biosynthesis and uncovers the role of SL-GA crosstalk in regulating anthocyanin biosynthesis in apple.
Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Giberelinas , Lactonas , Malus , Proteínas de Plantas , Malus/metabolismo , Malus/genética , Antocianinas/metabolismo , Giberelinas/metabolismo , Lactonas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais , Compostos Heterocíclicos com 3 Anéis/metabolismoRESUMO
Wounding stress leads to leaf senescence. However, the underlying molecular mechanism has not been elucidated. In this study, we investigated the role of the MdVQ10-MdWRKY75 module in wound-induced leaf senescence. MdWRKY75 was identified as a key positive modulator of wound-induced leaf senescence by activating the expression of the senescence-associated genes MdSAG12 and MdSAG18. MdVQ10 interacted with MdWRKY75 to enhance MdWRKY75-activated transcription of MdSAG12 and MdSAG18, thereby promoting leaf senescence triggered by wounding. In addition, the calmodulin-like protein MdCML15 promoted MdVQ10-mediated leaf senescence by stimulating the interaction between MdVQ10 and MdWRKY75. Moreover, the jasmonic acid signaling repressors MdJAZ12 and MdJAZ14 antagonized MdVQ10-mediated leaf senescence by weakening the MdVQ10-MdWRKY75 interaction. Our results demonstrate that the MdVQ10-MdWRKY75 module is a key modulator of wound-induced leaf senescence and provides insights into the mechanism of leaf senescence caused by wounding.
Assuntos
Malus , Malus/genética , Senescência Vegetal , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Jasmonic acid (JA) and gibberellin (GA) coordinately regulate plant developmental programs and environmental cue responses. However, the fine regulatory network of the cross-interaction between JA and GA remains largely elusive. In this study, we demonstrate that MdNAC72 together with MdABI5 positively regulates anthocyanin biosynthesis through an exquisite MdNAC72-MdABI5-MdbHLH3 transcriptional cascade in apple. MdNAC72 interacts with MdABI5 to promote the transcriptional activation of MdABI5 on its target gene MdbHLH3 and directly activates the transcription of MdABI5. The MdNAC72-MdABI5 module regulates the integration of JA and GA signals in anthocyanin biosynthesis by combining with JA repressor MdJAZ2 and GA repressor MdRGL2a. MdJAZ2 disrupts the MdNAC72-MdABI5 interaction and attenuates the transcriptional activation of MdABI5 by MdNAC72. MdRGL2a sequesters MdJAZ2 from the MdJAZ2-MdNAC72 protein complex, leading to the release of MdNAC72. The E3 ubiquitin ligase MdSINA2 is responsive to JA and GA signals and promotes ubiquitination-dependent degradation of MdNAC72. The MdNAC72-MdABI5 interface fine-regulates the integration of JA and GA signals at the transcriptional and posttranslational levels by combining MdJAZ2, MdRGL2a, and MdSINA2. In summary, our findings elucidate the fine regulatory network connecting JA and GA signals with MdNAC72-MdABI5 as the core in apple.
Assuntos
Ciclopentanos , Regulação da Expressão Gênica de Plantas , Giberelinas , Malus , Oxilipinas , Proteínas de Plantas , Transdução de Sinais , Ubiquitinação , Oxilipinas/metabolismo , Malus/genética , Malus/metabolismo , Ciclopentanos/metabolismo , Ubiquitinação/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Giberelinas/metabolismo , Proteólise/efeitos dos fármacos , Antocianinas/metabolismo , Ligação Proteica/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Modelos BiológicosRESUMO
Anthocyanin is a vital indicator for both fruit nutritional and commercial value. Anthocyanin accumulation is a surprisingly complicated process mediated by multiple networks associated with genetic, developmental, hormonal, and environmental factors. Transcriptional regulation along with epigenetic regulation constitutes the dominant molecular framework for anthocyanin biosynthesis. Here, we focus on current knowledge on regulatory mechanisms of anthocyanin accumulation, with emphasis on the latest progress in transcriptional and epigenetic regulation and the crosstalk between various signaling pathways. We present an emerging picture of how various internal and external stimuli control anthocyanin biosynthesis. Additionally, we discuss the synergistic or antagonistic effect of developmental, hormonal and environmental cues on anthocyanin accumulation in fruit.
Assuntos
Antocianinas , Frutas , Frutas/metabolismo , Antocianinas/metabolismo , Epigênese Genética , Pigmentação/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismoRESUMO
Although brassinolide (BR) and jasmonic acid (JA) play essential roles in the regulation of cold stress responses, the molecular basis of their crosstalk remains elusive. Here, we show a key component of BR signaling in apple (Malus × domestica), BR INSENSITIVE1 (BRI1)-EMS-SUPPRESSOR1 (BES1)-INTERACTING MYC-LIKE PROTEIN1 (MdBIM1), increases cold tolerance by directly activating expression of C-REPEAT BINDING FACTOR1 (MdCBF1) and forming a complex with C-REPEAT BINDING FACTOR2 (MdCBF2) to enhance MdCBF2-activated transcription of cold-responsive genes. Two repressors of JA signaling, JAZMONATE ZIM-DOMAIN1 (MdJAZ1) and JAZMONATE ZIM-DOMAIN2 (MdJAZ2), interact with MdBIM1 to integrate BR and JA signaling under cold stress. MdJAZ1 and MdJAZ2 reduce MdBIM1-promoted cold stress tolerance by attenuating transcriptional activation of MdCBF1 expression by MdBIM1 and interfering with the formation of the MdBIM1-MdCBF2 complex. Furthermore, the E3 ubiquitin ligase ARABIDOPSIS TÓXICOS en LEVADURA73 (MdATL73) decreases MdBIM1-promoted cold tolerance by targeting MdBIM1 for ubiquitination and degradation. Our results not only reveal crosstalk between BR and JA signaling mediated by a JAZ-BIM1-CBF module but also provide insights into the posttranslational regulatory mechanism of BR signaling.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Malus , Brassinosteroides/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Malus/genética , Malus/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
The E3 ubiquitin ligase MdSINA11 targets the jasmonate ZIM domain protein MdJAZ2 for ubiquitination and degradation through the 26S proteasome pathway, thereby initiating jasmonate signaling and jasmonic acid-triggered anthocyanin biosynthesis in apple.
Assuntos
Ciclopentanos , Malus , Oxilipinas , Proteínas de Plantas , Transdução de Sinais , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Malus/genética , Malus/metabolismo , Regulação da Expressão Gênica de Plantas , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , UbiquitinaçãoRESUMO
Anthocyanins are secondary metabolites induced by environmental stimuli and developmental signals. The positive regulators of anthocyanin biosynthesis have been reported, whereas the anthocyanin repressors have been neglected. Although the signal transduction pathways of gibberellin (GA) and jasmonic acid (JA) and their regulation of anthocyanin biosynthesis have been investigated, the cross-talk between GA and JA and the antagonistic mechanism of regulating anthocyanin biosynthesis remain to be investigated. In this study, we identified the anthocyanin repressor MdbHLH162 in apple and revealed its molecular mechanism of regulating anthocyanin biosynthesis by integrating the GA and JA signals. MdbHLH162 exerted passive repression by interacting with MdbHLH3 and MdbHLH33, which are two recognized positive regulators of anthocyanin biosynthesis. MdbHLH162 negatively regulated anthocyanin biosynthesis by disrupting the formation of the anthocyanin-activated MdMYB1-MdbHLH3/33 complexes and weakening transcriptional activation of the anthocyanin biosynthetic genes MdDFR and MdUF3GT by MdbHLH3 and MdbHLH33. The GA repressor MdRGL2a antagonized MdbHLH162-mediated inhibition of anthocyanins by sequestering MdbHLH162 from the MdbHLH162-MdbHLH3/33 complex. The JA repressors MdJAZ1 and MdJAZ2 interfered with the antagonistic regulation of MdbHLH162 by MdRGL2a by titrating the formation of the MdRGL2a-MdbHLH162 complex. Our findings reveal that MdbHLH162 integrates the GA and JA signals to negatively regulate anthocyanin biosynthesis. This study provides new information for discovering more anthocyanin biosynthesis repressors and explores the cross-talk between hormone signals.
Assuntos
Ciclopentanos , Malus , Oxilipinas , Malus/genética , Malus/metabolismo , Antocianinas/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Jasmonic acid (JA) induces chlorophyll degradation and leaf senescence. B-box (BBX) proteins play important roles in the modulation of leaf senescence, but the molecular mechanism of BBX protein-mediated leaf senescence remains to be further studied. Here, we identified the BBX protein MdBBX37 as a positive regulator of JA-induced leaf senescence in Malus domestica (apple). Further studies showed that MdBBX37 interacted with the senescence regulatory protein MdbHLH93 to enhance its transcriptional activation on the senescence-associated gene MdSAG18, thereby promoting leaf senescence. Moreover, the JA signaling repressor MdJAZ2 interacted with MdBBX37 and interfered with the interaction between MdBBX37 and MdbHLH93, thereby negatively mediating MdBBX37-promoted leaf senescence. In addition, the E3 ubiquitin ligase MdSINA3 delayed MdBBX37-promoted leaf senescence through targeting MdBBX37 for degradation. The MdJAZ2-MdBBX37-MdbHLH93-MdSAG18 and MdSINA3-MdBBX37 modules realized the precise modulation of JA on leaf senescence. In parallel, our data demonstrate that MdBBX37 was involved in abscisic acid (ABA)- and ethylene-mediated leaf senescence through interacting with the ABA signaling regulatory protein MdABI5 and ethylene signaling regulatory protein MdEIL1, respectively. Taken together, our results not only reveal the role of MdBBX37 as an integration node in JA-, ABA- and ethylene-mediated leaf senescence, but also provide new insights into the post-translational modification of BBX proteins.
Assuntos
Malus , Ácido Abscísico/metabolismo , Ciclopentanos , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Oxilipinas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Senescência Vegetal , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Although DELLA protein destabilization mediated by post-translational modifications is essential for gibberellin (GA) signal transduction and GA-regulated anthocyanin biosynthesis, the related mechanisms remain largely unknown. In this study, we report the ubiquitination and phosphorylation of an apple DELLA protein MdRGL2a in response to GA signaling and its regulatory role in anthocyanin biosynthesis. MdRGL2a could interact with MdWRKY75 to enhance the MdWRKY75-activated transcription of anthocyanin activator MdMYB1 and interfere with the interaction between anthocyanin repressor MdMYB308 and MdbHLH3 or MdbHLH33, thereby promoting anthocyanin accumulation. A protein kinase MdCIPK20 was found to phosphorylate and protect MdRGL2a from degradation, and it was essential for MdRGL2a-promoting anthocyanin accumulation. However, MdRGL2a and MdCIPK20 were ubiquitinated and degraded by E3 ubiquitin ligases MdSINA1 and MdSINA2, respectively, both of which were activated in the presence of GA. Our results display the integration of SINA1/2 with CIPK20 to dynamically regulate GA signaling and will be helpful toward understanding the mechanism of GA signal transduction and GA-inhibited anthocyanin biosynthesis. The discovery of extensive interactions between DELLA and SINA and CIPK proteins in apple will provide reference for the study of ubiquitination and phosphorylation of DELLA proteins in other species.
Assuntos
Arabidopsis , Malus , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Antocianinas/metabolismo , Arabidopsis/metabolismo , Proteínas Quinases/metabolismo , Ubiquitinação , Malus/genética , Malus/metabolismo , Giberelinas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Light affects many physiological and developmental processes of plants by regulating the expression and activity of light-responsive proteins. Among them, phytochrome interacting factors (PIFs) play pivotal roles in the regulation of anthocyanin accumulation and hypocotyl growth. However, the molecular mechanism is not well understood, especially in woody plants, such as apple (Malus × domestica). In this study, we identified a light-responsive PIF protein, MdPIF7, in apple and investigated the molecular mechanism of its regulation of anthocyanin biosynthesis and hypocotyl growth. We found that overexpression of MdPIF7 decreased anthocyanin accumulation in transgenic apple materials and promoted hypocotyl elongation in ectopically expressed Arabidopsis (Arabidopsis thaliana). Further investigation showed that MdPIF7 functioned by interacting with B-box 23 (MdBBX23), a positive regulator of anthocyanin biosynthesis in apple and hypocotyl growth inhibition in ectopically expressed Arabidopsis, and attenuating the transcriptional activation of MdBBX23 on LONG HYPOCOTYL 5 (MdHY5). In addition, MdPIF7 interacted with basic region leucine zipper 44 (MdbZIP44) and ethylene response factor 38 (MdERF38), two positive regulators of anthocyanin biosynthesis, and it negatively regulated MdbZIP44- and MdERF38-promoted anthocyanin accumulation by interfering with the interaction between MdbZIP44/MdERF38 and MdMYB1. Taken together, our results reveal that MdPIF7 regulates anthocyanin biosynthesis in apple and hypocotyl growth in ectopically expressed Arabidopsis through MdPIF7-MdBBX23-MdHY5 and MdPIF7-MdbZIP44/MdERF38-MdMYB1 modules. Our findings enrich the functional studies of PIF proteins and provide insights into the molecular mechanism of PIF-mediated anthocyanin biosynthesis and hypocotyl growth.
Assuntos
Malus , Fitocromo , Proteínas de Plantas , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo , Malus/metabolismo , Fitocromo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Auxin/indole-3-acetic acid (AUX/IAA) and auxin response factor (ARF) proteins are important components of the auxin signalling pathway, but their ubiquitination modification and the mechanism of auxin-mediated anthocyanin biosynthesis remain elusive. Here, the ARF MdARF5-1 was identified as a negative regulator of anthocyanin biosynthesis in apple, and it integrates auxin and ethylene signals by inhibiting the expression of the ethylene response factor MdERF3. The auxin repressor MdIAA29 decreased the inhibitory effect of MdARF5-1 on anthocyanin biosynthesis by attenuating the transcriptional inhibition of MdERF3 by MdARF5-1. In addition, the E3 ubiquitin ligases MdSINA4 and MdSINA11 played negative and positive regulatory roles in anthocyanin biosynthesis by targeting MdIAA29 and MdARF5-1 for ubiquitination degradation, respectively. MdSINA4 destabilized MdSINA11 to regulate anthocyanin accumulation in response to auxin signalling. In sum, our data revealed the crosstalk between auxin and ethylene signals mediated by the IAA29-ARF5-1-ERF3 module and provide new insights into the ubiquitination modification of the auxin signalling pathway.
Assuntos
Malus , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Malus/genética , Malus/metabolismo , Antocianinas , Ácidos Indolacéticos/metabolismo , Etilenos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
KEY MESSAGE: Ectopic expression of MmCYP1A1 gene from Mus musculus in apple calli and Arabidopsis increased the levels of melatonin and 6-hydroxymelatonin, and improved their stress resistance. Melatonin occurs widely in organisms, playing a key regulatory role. CYP1A1 is a cytochrome P450 monooxygenase, involved in the melatonin metabolism, and is responsible for the synthesis of 6-hydroxymelatonin from melatonin. Melatonin and 6-hydroxymelatonin have strong antioxidant activities in animals. Here, we cloned MmCYP1A1 from Mus musculus and found that ectopic expression of MmCYP1A1 improved the levels of melatonin and 6-hydroxymelatonin in transgenic apple calli and Arabidopsis. Subsequently, we observed that MmCYP1A1 increased the tolerance of transgenic apple calli and Arabidopsis to osmotic stress simulated by polyethylene glycol 6000 (PEG 6000), as well as resistance of transgenic Arabidopsis to drought stress. Further, the number of lateral roots of MmCYP1A1 transgenic Arabidopsis were enhanced significantly after PEG 6000 treatment. The expression of MmCYP1A1 remarkably reduced malondialdehyde (MDA) content, electrolyte leakage, accumulation of H2O2 and O2- during stress treatment. Moreover, MmCYP1A1 enhanced stress tolerance in apple calli and Arabidopsis by increasing the expression levels of resistance genes. MmCYP1A1 also promoted stomatal closure in transgenic Arabidopsis to reduce leaf water loss during drought. Our results indicate that MmCYP1A1 plays a key role in plant stress tolerance, which may provide a reference for future plant stress tolerance studies.
Assuntos
Arabidopsis , Malus , Melatonina , Animais , Camundongos , Arabidopsis/genética , Arabidopsis/metabolismo , Malus/genética , Malus/metabolismo , Melatonina/metabolismo , Expressão Ectópica do Gene , Peróxido de Hidrogênio/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
PHR1 (PHOSPHATE STARVATION RESPONSE1) plays key roles in the inorganic phosphate (Pi) starvation response and in Pi deficiency-induced anthocyanin biosynthesis in plants. However, the post-translational regulation of PHR1 is unclear, and the molecular basis of PHR1-mediated anthocyanin biosynthesis remains elusive. In this study, we determined that MdPHR1 was essential for Pi deficiency-induced anthocyanin accumulation in apple (Malus × domestica). MdPHR1 interacted with MdWRKY75, a positive regulator of anthocyanin biosynthesis, to enhance the MdWRKY75-activated transcription of MdMYB1, leading to anthocyanin accumulation. In addition, the E3 ubiquitin ligase SEVEN IN ABSENTIA1 (MdSINA1) negatively regulated MdPHR1-promoted anthocyanin biosynthesis via the ubiquitination-mediated degradation of MdPHR1. Moreover, the protein kinase apple BRASSINOSTEROID INSENSITIVE2 (MdBIN2) phosphorylated MdPHR1 and positively regulated MdPHR1-mediated anthocyanin accumulation by attenuating the MdSINA1-mediated ubiquitination degradation of MdPHR1. Taken together, these findings not only demonstrate the regulatory role of MdPHR1 in Pi starvation induced anthocyanin accumulation, but also provide an insight into the post-translational regulation of PHR1.
Assuntos
Malus , Malus/genética , Malus/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitinação , Regulação da Expressão Gênica de PlantasRESUMO
Jasmonate (JA) induces the biosynthesis of anthocyanin and proanthocyanidin. MdMYB9 is essential for modulating the accumulation of both anthocyanin and proanthocyanidin in apple, but the molecular mechanism for induction of anthocyanin and proanthocyanidin biosynthesis by JA is unclear. In this study, we discovered an apple telomere-binding protein (MdTRB1) to be the interacting protein of MdMYB9. A series of biological assays showed that MdTRB1 acted as a positive modulator of anthocyanin and proanthocyanidin accumulation, and is dependent on MdMYB9. MdTRB1 interacted with MdMYB9 and enhanced the activation activity of MdMYB9 to its downstream genes. In addition, we found that the JA signaling repressor MdJAZ1 interacted with MdTRB1 and interfered with the interaction between MdTRB1 and MdMYB9, therefore negatively modulating MdTRB1-promoted biosynthesis of anthocyanin and proanthocyanidin. These results show that the JAZ1-TRB1-MYB9 module dynamically modulates JA-mediated accumulation of anthocyanin and proanthocyanidin. Taken together, our data further expand the functional study of TRB1 and provide insights for further studies of the modulation of anthocyanin and proanthocyanidin biosynthesis by JA.
Assuntos
Acetatos/farmacologia , Antocianinas/metabolismo , Ciclopentanos/farmacologia , Malus/genética , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Proantocianidinas/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Proteínas de Ligação a Telômeros/genéticaRESUMO
Abscisic acid (ABA) induces chlorophyll degradation and leaf senescence; however, the molecular mechanism remains poorly understood, especially in woody plants. In this study, we found that MdABI5 plays an essential role in the regulation of ABA-triggered leaf senescence in Malus domestica (apple). Through yeast screening, three transcription factors, MdBBX22, MdWRKY40 and MdbZIP44, were found to interact directly with MdABI5 in vitro and in vivo. Physiological and biochemical assays showed that MdBBX22 delayed leaf senescence in two pathways. First, MdBBX22 interacted with MdABI5 to inhibit the transcriptional activity of MdABI5 on the chlorophyll catabolic genes MdNYE1 and MdNYC1, thus negatively regulating chlorophyll degradation and leaf senescence. Second, MdBBX22 interacted with MdHY5 to interfere with the transcriptional activation of MdHY5 on MdABI5, thereby inhibiting the expression of MdABI5, which also contributed to the delay of leaf senescence. MdWRKY40 and MdbZIP44 were identified as positive regulators of leaf senescence. They accelerated MdABI5-promoted leaf senescence through the same regulatory pathways, i.e., interacting with MdABI5 to enhance the transcriptional activity of MdABI5 on MdNYE1 and MdNYC1. Taken together, our results suggest that MdABI5 works with its positive or negative interaction partners to regulate ABA-mediated leaf senescence in apple, in which it acts as a core regulator. The antagonistic regulation pathways ensure that plants respond to external stresses flexibly and efficiently. Our results provide a concept for further study on the regulation mechanisms of leaf senescence.
Assuntos
Ácido Abscísico/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Malus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Envelhecimento/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Malus/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologiaRESUMO
TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in plant abiotic stresses. However, little is known about the role of TCP genes in the drought stress tolerance of apple. Here, we found that abscisic acid (ABA) and drought treatment reduced the expression of MdTCP46, and overexpression of MdTCP46 reduced ABA sensitivity and drought stress resistance. MdTCP46 was found to interact with MdABI5 both in vitro and in vivo, and this interaction was essential for drought resistance via the ABA-dependent pathway. Overexpression of MdABI5 enhanced ABA sensitivity and drought stress resistance by directly activating the expression of MdEM6 and MdRD29A. MdTCP46 significantly suppressed the transcriptional activity of MdABI5, thereby negatively regulating MdABI5-mediated ABA signalling and drought response. Overall, our results demonstrate that the MdTCP46-MdABI5-MdEM6/MdRD29A regulatory module plays a key role in the modulation of ABA signalling and the drought stress response. These findings provide new insight into the role of MdTCP46 in ABA signalling and abiotic stress responses.
Assuntos
Arabidopsis , Malus , Ácido Abscísico/metabolismo , Arabidopsis/genética , Secas , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Abscisic acid is involved in the regulation of cold stress response, but its molecular mechanism remains to be elucidated. In this study, we demonstrated that the APETALA2/ethylene responsive factor (AP2/ERF) family protein MdABI4 positively regulates abscisic acid-mediated cold tolerance in apple. We found that MdABI4 interacts with MdICE1, a key regulatory protein involved in the cold stress response, and enhances the transcriptional regulatory function of MdICE1 on its downstream target gene MdCBF1, thus improving abscisic acid-mediated cold tolerance. The jasmonate-ZIM domain (JAZ) proteins MdJAZ1 and MdJAZ2 negatively modulate MdABI4-improved cold tolerance in apple by interacting with the MdABI4 protein. Further investigation showed that MdJAZ1 and MdJAZ2 interfere with the interaction between the MdABI4 and MdICE1 proteins. Together, our data revealed that MdABI4 integrates jasmonic acid and abscisic acid signals to precisely modulate cold tolerance in apple through the JAZ-ABI4-ICE1-CBF regulatory cascade. These findings provide insights into the crosstalk between jasmonic acid and abscisic acid signals in response to cold stress.
Assuntos
Malus , Proteínas de Plantas , Fatores de Transcrição , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Drought stress induces anthocyanin biosynthesis in many plant species, but the underlying molecular mechanism remains unclear. Ethylene response factors (ERFs) play key roles in plant growth and various stress responses, including affecting anthocyanin biosynthesis. Here, we characterized an ERF protein, MdERF38, which is involved in drought stress-induced anthocyanin biosynthesis. Biochemical and molecular analyses showed that MdERF38 interacted with MdMYB1, a positive modulator of anthocyanin biosynthesis, and facilitated the binding of MdMYB1 to its target genes. Therefore, MdERF38 promoted anthocyanin biosynthesis in response to drought stress. Furthermore, we found that MdBT2, a negative modulator of anthocyanin biosynthesis, decreased MdERF38-promoted anthocyanin biosynthesis by accelerating the degradation of the MdERF38 protein. In summary, our data provide a mechanism for drought stress-induced anthocyanin biosynthesis that involves dynamic modulation of MdERF38 at both transcriptional and post-translational levels.
Assuntos
Antocianinas/metabolismo , Etilenos/metabolismo , Malus/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Secas , Malus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genéticaRESUMO
The plant hormone jasmonic acid (JA) is involved in the cold stress response, and the inducer of CBF expression 1 (ICE1)- C-repeat binding factor (CBF) regulatory cascade plays a key role in the regulation of cold stress tolerance. In this study, we showed that a novel B-box (BBX) protein MdBBX37 positively regulates JA-mediated cold-stress resistance in apple. We found that MdBBX37 bound to the MdCBF1 and MdCBF4 promoters to activate their transcription, and also interacted with MdICE1 to enhance the transcriptional activity of MdICE1 on MdCBF1, thus promoting its cold tolerance. Two JA signaling repressors, MdJAZ1 and MdJAZ2 (JAZ, JAZMONATE ZIM-DOMAIN), interacted with MdBBX37 to repress the transcriptional activity of MdBBX37 on MdCBF1 and MdCBF4, and also interfered with the interaction between MdBBX37 and MdICE1, thus negatively regulating JA-mediated cold tolerance. E3 ligase MdMIEL1 (MIEL1, MYB30-Interacting E3 Ligase1) reduced MdBBX37-improved cold resistance by mediating ubiquitination and degradation of the MdBBX37 protein. The data reveal that MIEL1 and JAZ proteins co-regulate JA-mediated cold stress tolerance through the BBX37-ICE1-CBF module in apple. These results will aid further examination of the post-translational modification of BBX proteins and the regulatory mechanism of JA-mediated cold stress tolerance.
Assuntos
Resposta ao Choque Frio , Malus , Proteínas de Plantas/genética , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/fisiologia , Oxilipinas , UbiquitinaçãoRESUMO
Jasmonic acid (JA) is shown to induce leaf senescence. However, the underlying molecular mechanism is not well understood, especially in woody plants such as fruit trees. In this study, we are interested in exploring the biological role of MdBT2 in JA-mediated leaf senescence. We found that MdBT2 played an antagonistic role in MdMYC2-promoted leaf senescence. Our results revealed that MdBT2 interacted with MdMYC2 and accelerated its ubiquitination degradation, thus negatively regulated MdMYC2-promoted leaf senescence. In addition, MdBT2 acted as a stabilizing factor to improve the stability of MdJAZ2 through direct interaction, thereby inhibited JA-mediated leaf senescence. Furthermore, our results also showed that MdBT2 interacted with a subset of JAZ proteins in apple, including MdJAZ1, MdJAZ3, MdJAZ4 and MdJAZ8. Our investigations provide new insight into molecular mechanisms of JA-modulated leaf senescence. The dynamic JA-MdBT2-MdJAZ2-MdMYC2 regulatory module plays an important role in JA-modulated leaf senescence.