Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Chemistry ; 29(58): e202301819, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37498316

RESUMO

One of the bottlenecks associated with supramolecular polymerization of functional π-systems is the spontaneous assembly of monomers leading to one- or two-dimensional (1D or 2D) polymers without control over chain length and optical properties. In the case of supramolecular copolymerization of monomers that are structurally too diverse, preferential self-sorting occurs unless they are closely interacting donor-acceptor pairs. Herein, it is established that the spontaneous 1D polymerization of a phenyleneethynylene (PE) derivative and the 2D polymerization of a Bodipy derivative (BODIPY) can be controlled by copolymerizing them in different ratios, leading to unusual spindle-shaped structures with controlled aspect ratio, as evident by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) studies. For example, when the content of BODIPY is 50 % in the BODIPY-PE mixture, the 1D polymerization of PE is significantly restricted to form elongated spindle-like structures having an aspect ratio of 4-6. The addition of 75 % of BODIPY to PE resulted in circular spindles having an aspect ratio of 1-2.5, thereby completely restricting the 1D polymerization of PE monomers. Moreover, the resultant supramolecular copolymers exhibited morphology and aspect ratio dependent emission features as observed by the time-resolved emission studies.

2.
Plant Cell Rep ; 41(3): 655-673, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34628530

RESUMO

High temperature challenges global crop production by limiting the growth and development of the reproductive structures and seed. It impairs the developmental stages of male and female gametogenesis, pollination, fertilization, endosperm formation and embryo development. Among these, the male reproductive processes are highly prone to abnormalities under high temperature at various stages of development. The disruption of source-sink balance is the main constraint for satisfactory growth of the reproductive structures which is disturbed at the level of sucrose import and utilization within the tissue. Seed development after fertilization is affected by modulation in the activity of enzymes involved in starch metabolism. In addition, the alteration in the seed-filling rate and its duration affects the seed weight and quality. The present review critically discusses the role of sugar metabolism in influencing the various stages of gamete and seed development under high temperature stress. It also highlights the interaction of the sugars with hormones that mediate the transport of sugars to sink tissues. The role of transcription factors for the regulation of sugar availability under high temperature has also been discussed. Further, the omics-based systematic investigation has been suggested to understand the synergistic or antagonistic interactions between sugars, hormones and reactive oxygen species at various points of sucrose flow from source to sink under high temperature stress.


Assuntos
Plantas , Sementes , Fertilização , Hormônios/metabolismo , Plantas/metabolismo , Sementes/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo , Temperatura
3.
Physiol Plant ; 172(2): 1227-1243, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33860955

RESUMO

Hydrogen sulfide (H2 S) is a small, reactive signaling molecule that is produced within chloroplasts of plant cells as an intermediate in the assimilatory sulfate reduction pathway by the enzyme sulfite reductase. In addition, H2 S is also produced in cytosol and mitochondria by desulfhydration of l-cysteine catalyzed by l-cysteine desulfhydrase (DES1) in the cytosol and from ß-cyanoalanine in mitochondria, in a reaction catalyzed by ß-cyano-Ala synthase C1 (CAS-C1). H2 S exerts its numerous biological functions by post-translational modification involving oxidation of cysteine residues (RSH) to persulfides (RSSH). At lower concentrations (10-1000 µmol L-1 ), H2 S shows huge agricultural potential as it increases the germination rate, the size, fresh weight, and ultimately the crop yield. It is also involved in abiotic stress response against drought, salinity, high temperature, and heavy metals. H2 S donor, for example, sodium hydrosulfide (NaHS), has been exogenously applied on plants by various researchers to provide drought stress tolerance. Exogenous application results in the accumulation of polyamines, sugars, glycine betaine, and enhancement of the antioxidant enzyme activities in response to drought-induced osmotic and oxidative stress, thus, providing stress adaptation to plants. At the biochemical level, administration of H2 S donors reduces malondialdehyde content and lipoxygenase activity to maintain the cell integrity, causes abscisic acid-mediated stomatal closure to prevent water loss through transpiration, and accelerates the photosystem II repair cycle. Here, we review the crosstalk of H2 S with secondary messengers and phytohormones towards the regulation of drought stress response and emphasize various approaches that can be addressed to strengthen research in this area.


Assuntos
Sulfeto de Hidrogênio , Ácido Abscísico , Secas , Plantas , Estresse Fisiológico
4.
Physiol Plant ; 173(4): 1421-1433, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33837561

RESUMO

Sugar beet is a salt-tolerant crop that can be explored for crop production in degraded saline soils. Seeds of multigerm genotypes LKC-2006 (susceptible) and LKC-HB (tolerant) were grown in 150 mM NaCl, from germination to 60 days after sowing, to decipher the mechanism of salinity tolerance at the vegetative stage. The biomass of the root and leaf were maintained in the tolerant genotype, LKC-HB, under saline conditions. Na+ /K+ ratios were similar in roots and leaves of LKC-HB, with lower values under salinity compared to LKC 2006. Infrared temperatures were 0.96°C lower in LKC-HB than in LKC-2006, which helped regulate the leaf water status under stressed conditions. Pulse-chase experiment showed that 14 C photosynthate was preferentially allocated towards the development of new leaves in the tolerant genotype. The sugar profile of leaves and roots showed accumulation of raffinose in leaves of LKC-HB, indicating a plausible role in imparting salinity tolerance by serving as an osmolyte or scavenger. The molecular analysis of the genes responsible for raffinose synthesis revealed an 18-fold increase in the expression of BvRS2 in the tolerant genotype, suggesting its involvement in raffinose synthesis. Our study accentuated that raffinose accumulation in leaves is vital for inducing salinity tolerance and maintenance of shoot dry weight in sugar beet.


Assuntos
Beta vulgaris , Tolerância ao Sal , Beta vulgaris/genética , Carbono , Folhas de Planta , Raízes de Plantas/genética , Rafinose , Salinidade , Tolerância ao Sal/genética , Açúcares
5.
Mikrochim Acta ; 187(11): 618, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33074441

RESUMO

GOLD SELEX, a novel SELEX approach has been developed that obviates the need for target immobilization for aptamer development. The approach purely relies on the affinity of the aptamers towards its target, to get detached from the gold nanoparticle (GNP) surface (weak attraction) after binding with its target. Thus, only the completely detached aptamers are selected for the next round of SELEX. This, in-process, also addresses the issue of residual binding and thus improves the sensitivity of the developed aptamers. As a proof of concept for establishing the utility of the approach for small molecules, we have developed aptamers against dichlorvos (DV), a pesticide in just 8 rounds. Using these aptamer candidates, we have developed an aptamer-NanoZyme (GNP having peroxidase mimic activity) based colorimetric assay. The developed aptamer displayed high affinity (Kd in sub micromolar range) and selectivity for DV. The developed assay could detect as low as 15 µM DV. The best-performing aptamer was also able to work in real samples like river water and commercial apple juice. The GOLD SELEX approach developed in this study, we believe, can act as a template for future SELEX strategy development and can replace the conventional SELEX strategy.

6.
Bioelectromagnetics ; 37(6): 400-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27442612

RESUMO

Soil moisture stress during pod filling is a major constraint in production of chickpea (Cicer arietinum L.), a fundamentally dry land crop. We investigated effect of pre-sowing seed priming with static magnetic field (SMF) on alleviation of stress through improvement in radiation and water use efficiencies. Experiments were conducted under greenhouse and open field conditions with desi and kabuli genotypes. Seeds exposed to SMF (strength: 100 mT, exposure: 1 h) led to increase in root volume and surface area by 70% and 65%, respectively. This enabled the crop to utilize 60% higher moisture during the active growth period (78-118 days after sowing), when soil moisture became limiting. Both genotypes from treated seeds had better water utilization, biomass, and radiation use efficiencies (17%, 40%, and 26% over control). Seed pre-treatment with SMF could, therefore, be a viable option for chickpea to alleviate soil moisture stress in arid and semi-arid regions, helping in augmenting its production. It could be a viable option to improve growth and yield of chickpea under deficit soil moisture condition, as the selection and breeding program takes a decade before a tolerant variety is released. Bioelectromagnetics. 37:400-408, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Cicer/crescimento & desenvolvimento , Cicer/fisiologia , Campos Magnéticos , Solo/química , Estresse Fisiológico , Água/metabolismo , Cicer/metabolismo , Cicer/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Sementes/efeitos dos fármacos , Sementes/metabolismo , Sementes/efeitos da radiação , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação , Água/farmacologia
7.
J Food Sci Technol ; 53(11): 3969-3977, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28035152

RESUMO

To elucidate the mechanism responsible for magnetic field induced seed invigoration in aged seeds an experiment was conducted on six year old garden pea seeds stored under controlled (20 °C and 40% RH) condition. Aged seeds were magnetoprimed by exposing to pulsed magnetic field (PMF) of 100 mT for 1 h in three pulsed modes. The 6 min on and off PMF showed significant improvement in germination (7.6%) and vigor (84.8%) over aged seeds. Superoxide and hydrogen peroxide production increased in germinating primed seeds by 27 and 52%, respectively, over aged seeds. Nicotinamide adenine dinucleotide (reduced) (NADH) peroxidase and superoxide dismutase involved in generation of hydrogen peroxide showed increased activity in PMF primed seeds. Increase in catalase, ascorbate peroxidase and glutathione reductase activity after 36 h of imbibition in primed seeds demonstrated its involvement in seed recovery during magnetopriming. An increase in total antioxidants also helped in maintaining the level of free radicals for promoting germination of magnetoprimed seeds. A 44% increase in level of protein carbonyls after 36 h indicated involvement of protein oxidation for counteracting and/or utilizing the production of ROS and faster mobilization of reserve proteins. Higher production of free radicals in primed seeds did not cause lipid peroxidation as malondialdehyde content was low. Lipoxygenase was involved in the germination associated events as the magnitude of activity was higher in primed aged seeds compared to aged seeds. Our study elucidated that PMF mediated improvement in seed quality of aged pea seeds was facilitated by fine tuning of free radicals by the antioxidant defense system and protein oxidation.

8.
J Food Sci Technol ; 52(8): 4785-96, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26243899

RESUMO

Soybean seeds were exposed to gamma radiation (0.5, 1, 3 and 5 kGy), static magnetic field (50, 100 and 200 mT) and a combination of gamma radiation and magnetic energy (0.5 kGy + 200 mT and 5 kGy + 50 mT) and stored at room temperature for six months. These seeds were later subjected to accelerated ageing treatment at 42 °C temperature and 95-100 % relative humidity and were compared for various physical and biochemical characteristics between the untreated and the energized treatments. Energy treatment protected the quality of stored seeds in terms of its protein and oil content . Accelerated aging conditions, however, affected the oil and protein quantity and quality of seed negatively. Antioxidant enzymes exhibited a decline in their activity during aging while the LOX activity, which reflects the rate of lipid peroxidation, in general, increased during the aging. Gamma irradiated (3 and 5 kGy) and magnetic field treated seeds (100 and 200 mT) maintained a higher catalase and ascorbate peroxidase activity which may help in efficient scavenging of deleterious free radical produced during the aging. Aging caused peroxidative changes to lipids, which could be contributed to the loss of oil quality. Among the electromagnetic energy treatments, a dose of 1-5 kGy of gamma and 100 mT, 200 mT magnetic field effectively slowed the rate of biochemical degradation and loss of cellular integrity in seeds stored under conditions of accelerated aging and thus, protected the deterioration of seed quality. Energy combination treatments did not yield any additional protection advantage.

9.
Int J Biol Macromol ; 256(Pt 1): 128295, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992929

RESUMO

Heart failure (HF) is emerging as a leading cause of death worldwide. Estimation of BNP levels is a routine diagnosis in these patients. However, in patients having high body-mass index (BMI), renal disease or in geriatric patients, BNP level is reported to be noisy and leads to incongruous conclusion. Thus, for better risk stratification among heart failure patients, it is imperative to look for a superior biomarker. In recent times, sST2 has shown promise as a biomarker. Identifying such biomarkers in peripheral blood of HF patients, need an affine and selective molecular recognition element. Thus, in the current study an aptamer (sS9_P) against sST2 was identified from an aptamer library. Systematic Evolution of Ligands through Exponential enrichment (SELEX) derived aptamer evinced role of its primer binding domains in maintaining its selectivity. This aptamer candidate demonstrated dissociation constant (Kd) in low nanomolar range, and the Limit of Detection (LOD) was ~4 ng. Circular dichroism confirms the formation of complex stem-loop like structure. The well characterized sS9_P aptamer was used in an Aptamer Linked Immobilized Sorbent Assay (ALISA) to detect sST2 level in patients' serum (n = 99). Aptamer sS9_P has shown significant discrimination to differentiate HF patients and healthy volunteers with a reasonable specificity (~83 %) with a modest sensitivity of ~64 %. While sST-2 antibody has shown poor specificity of ~44% but good sensitivity (~87%). The insight obtained from this study indicates that a combination of aptamer and antibody-based assay can be used to design a point-of-care assay for the rapid detection of HF patients in emergency settings.


Assuntos
Aptâmeros de Nucleotídeos , Insuficiência Cardíaca , Humanos , Idoso , Aptâmeros de Nucleotídeos/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1 , Prognóstico , Insuficiência Cardíaca/diagnóstico , Biomarcadores
10.
Funct Plant Biol ; 512024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38326234

RESUMO

Sweet corn is one of the most popular vegetables worldwide. However, traditional shrunken2 (sh2 )-based sweet corn varieties are poor in nutritional quality. Here, we analysed the effect of (1) ß-carotene hydroxylase1 (crtRB1 ), (2) opaque2 (o2 ) and (3) o2+crtRB1 genes on nutritional quality, germination, seed vigour and physico-biochemical traits in a set of 27 biofortified sh2 -based sweet corn inbreds. The biofortified sweet corn inbreds recorded significantly higher concentrations of proA (16.47µg g-1 ), lysine (0.36%) and tryptophan (0.09%) over original inbreds (proA: 3.14µg g-1 , lysine: 0.18%, tryptophan: 0.04%). The crtRB1 -based inbreds had the lowest electrical conductivity (EC), whereas o2 -based inbreds possessed the highest EC. The o2 +crtRB1 -based inbreds showed similar EC to the original inbreds. Interestingly, o2 -based inbreds also had the lowest germination and seed vigour compared to original inbreds, whereas crtRB1 and o2 +crtRB1 introgressed sweet corn inbreds showed similar germination and seed vigour traits to their original versions. This suggested that the negative effect of o2 on germination, seed vigour and EC is nullified by crtRB1 in the double mutant sweet corn. Overall, o2 +crtRB1 -based sweet corn inbreds were found the most desirable over crtRB1 - and o2 -based inbreds alone.


Assuntos
Germinação , Zea mays , Zea mays/genética , Verduras , Lisina/genética , Lisina/farmacologia , Triptofano/genética , Triptofano/farmacologia , Sementes/genética , Genótipo
11.
Front Immunol ; 14: 1294397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274802

RESUMO

Visceral leishmaniasis (VL) is referred to as the most severe and fatal type of leishmaniasis basically caused by Leishmania donovani and L. infantum. The most effective method for preventing the spread of the disease is vaccination. Till today, there is no promising licensed vaccination for human VL. Hence, investigation for vaccines is necessary to enrich the therapeutic repertoire against leishmaniasis. Tuzin is a rare trans-membrane protein that has been reported in Trypanosoma cruzi with unknown function. However, tuzin is not characterized in Leishmania parasites. In this study, we for the first time demonstrated that tuzin protein was expressed in both stages (promastigote and amastigote) of L. donovani parasites. In-silico studies revealed that tuzin has potent antigenic properties. Therefore, we analyzed the immunogenicity of tuzin protein and immune response in BALB/c mice challenged with the L. donovani parasite. We observed that tuzin-vaccinated mice have significantly reduced parasite burden in the spleen and liver compared with the control. The number of granulomas in the liver was also significantly decreased compared with the control groups. We further measured the IgG2a antibody level, a marker of Th1 immune response in VL, which was significantly higher in the serum of immunized mice when compared with the control. Splenocytes stimulated with soluble Leishmania antigen (SLA) displayed a significant increase in NO and ROS levels compared with the control groups. Tuzin-immunized and parasite-challenged mice exhibit a notable rise in the IFN-γ/IL-10 ratio by significantly suppressing IL-10 expression level, an immunosuppressive cytokine that inhibits leishmanicidal immune function and encourages disease progression. In conclusion, tuzin immunizations substantially increase the protective immune response in L. donovani-challenged mice groups compared with control.


Assuntos
Leishmania donovani , Vacinas contra Leishmaniose , Leishmaniose Visceral , Animais , Humanos , Camundongos , Interleucina-10 , Camundongos Endogâmicos BALB C , Imunidade Adaptativa
12.
Antioxidants (Basel) ; 12(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36829898

RESUMO

High night temperature (HNT) impairs crop productivity through the reproductive failure of gametes (pollen and pistil). Though female gametophyte (pistil) is an equal partner in the seed-set, the knowledge of the antioxidant system(s) and hormonal control of HNT tolerance or susceptibility of pistils is limited and lacking. The objectives of this study were to determine the antioxidant mechanism for homeostatic control of free radicals, and the involvement of abscisic acid (ABA) and gibberellic acid (GA3) in HNT stress protection in the wheat pistils of contrasting wheat genotypes. We hypothesized that HNT tolerance is attributed to the homeostatic control of reactive oxygen species (ROS) and hormonal readjustment in pistils of the tolerant genotype. The ears of two contrasting wheat genotypes-HD 2329 (susceptible) and Raj 3765 (tolerant) were subjected to two HNTs (+5 °C and +8 °C) over ambient, in the absence and presence of dimethylthiourea (DMTU), a chemical trap of hydrogen peroxide (H2O2). Results showed that HNTs significantly increased ROS in pistils of susceptible genotype HD 2329 to a relatively greater extent compared to tolerant genotype Raj 3765. The response was similar in the presence or absence of DMTU, but the H2O2 values were lower in the presence of DMTU. The ROS levels were balanced by increased activity of peroxidase under HNT to a greater extent in the tolerant genotype. Cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) activity was inversely related to H2O2 production within a critical range in Raj 3765, indicating its modulation by H2O2 levels as no change was observed at the transcriptional level. The hormonal status showed increased ABA and decreased GA3 contents with increasing temperature. Our study elucidates the role of H2O2 and GA3 in stress tolerance of pistils of tolerant genotype where GAPC acts as a ROS sensor due to H2O2-mediated decrease in its activity.

13.
Microbiol Spectr ; 11(1): e0197322, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36507689

RESUMO

In order to adapt in host tissues, microbial pathogens regulate their gene expression through a variety of transcription factors. Here, we have functionally characterized Rv0792c, a HutC homolog from Mycobacterium tuberculosis. In comparison to the parental strain, a strain of M. tuberculosis with a Rv0792c mutant was compromised for survival upon exposure to oxidative stress and infection in guinea pigs. RNA sequencing analysis revealed that Rv0792c regulates the expression of genes involved in stress adaptation and virulence of M. tuberculosis. Solution small-angle X-ray scattering (SAXS) data-steered model building confirmed that the C-terminal region plays a pivotal role in dimer formation. Systematic evolution of ligands by exponential enrichment (SELEX) resulted in the identification of single-strand DNA (ssDNA) aptamers that can be used as a tool to identify small-molecule inhibitors targeting Rv0792c. Using SELEX and SAXS data-based modeling, we identified residues essential for Rv0792c's aptamer binding activity. In this study, we also identified I-OMe-Tyrphostin as an inhibitor of Rv0792c's aptamer and DNA binding activity. The identified small molecule reduced the growth of intracellular M. tuberculosis in macrophages. The present study thus provides a detailed shape-function characterization of a HutC family of transcription factor from M. tuberculosis. IMPORTANCE Prokaryotes encode a large number of GntR family transcription factors that are involved in various fundamental biological processes, including stress adaptation and pathogenesis. Here, we investigated the structural and functional role of Rv0792c, a HutC homolog from M. tuberculosis. We demonstrated that Rv0792c is essential for M. tuberculosis to adapt to oxidative stress and establish disease in guinea pigs. Using a systematic evolution of ligands by exponential enrichment (SELEX) approach, we identified ssDNA aptamers from a random ssDNA library that bound to Rv0792c protein. These aptamers were thoroughly characterized using biochemical and biophysical assays. Using SAXS, we determined the structural model of Rv0792c in both the presence and absence of the aptamers. Further, using a combination of SELEX and SAXS methodologies, we identified I-OMe-Tyrphostin as a potential inhibitor of Rv0792c. Here we provide a detailed functional characterization of a transcription factor belonging to the HutC family from M. tuberculosis.


Assuntos
Aptâmeros de Nucleotídeos , Mycobacterium tuberculosis , Tuberculose , Animais , Cobaias , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tirfostinas , Espalhamento a Baixo Ângulo , Aptâmeros de Nucleotídeos/química , Difração de Raios X , Fatores de Transcrição/metabolismo , DNA/metabolismo
14.
Bioelectromagnetics ; 33(5): 428-37, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22253132

RESUMO

Our previous investigation reported the beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean. In this study, soybean seeds treated with static magnetic fields of 150 and 200 mT for 1 h were evaluated for reactive oxygen species (ROS) and activity of antioxidant enzymes. Superoxide and hydroxyl radicals were measured in embryos and hypocotyls of germinating seeds by electron paramagnetic resonance spectroscopy and kinetics of superoxide production; hydrogen peroxide and antioxidant activities were estimated spectrophotometrically. Magnetic field treatment resulted in enhanced production of ROS mediated by cell wall peroxidase while ascorbic acid content, superoxide dismutase and ascorbate peroxidase activity decreased in the hypocotyl of germinating seeds. An increase in the cytosolic peroxidase activity indicated that this antioxidant enzyme had a vital role in scavenging the increased H(2)O(2) produced in seedlings from the magnetically treated seeds. Hence, these studies contribute to our first report on the biochemical basis of enhanced germination and seedling growth in magnetically treated seeds of soybean in relation to increased production of ROS.


Assuntos
Glycine max/metabolismo , Campos Magnéticos/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Germinação , Tamanho do Órgão , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Glycine max/enzimologia , Glycine max/crescimento & desenvolvimento , Fatores de Tempo
15.
Indian J Biochem Biophys ; 49(1): 63-70, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22435146

RESUMO

The effect of magnetic field (MF) treatments of maize (Zea mays L.) var. Ganga Safed 2 seeds on the growth, leaf water status, photosynthesis and antioxidant enzyme system under soil water stress was investigated under greenhouse conditions. The seeds were exposed to static MFs of 100 and 200 mT for 2 and 1 h, respectively. The treated seeds were sown in sand beds for seven days and transplanted in pots that were maintained at -0.03, -0.2 and -0.4 MPa soil water potentials under greenhouse conditions. MF exposure of seeds significantly enhanced all growth parameters, compared to the control seedlings. The significant increase in root parameters in seedlings from magnetically-exposed seeds resulted in maintenance of better leaf water status in terms of increase in leaf water potential, turgor potential and relative water content. Photosynthesis, stomatal conductance and chlorophyll content increased in plants from treated seeds, compared to control under irrigated and mild stress condition. Leaves from plants of magnetically-treated seeds showed decreased levels of hydrogen peroxide and antioxidant defense system enzymes (peroxidases, catalase and superoxide dismutase) under moisture stress conditions, when compared with untreated controls. Mild stress of -0.2 MPa induced a stimulating effect on functional root parameters, especially in 200 mT treated seedlings which can be exploited profitably for rain fed conditions. Our results suggested that MF treatment (100 mT for 2 h and 200 for 1 h) of maize seeds enhanced the seedling growth, leaf water status, photosynthesis rate and lowered the antioxidant defense system of seedlings under soil water stress. Thus, pre sowing static magnetic field treatment of seeds can be effectively used for improving growth under water stress.


Assuntos
Campos Magnéticos , Folhas de Planta/química , Folhas de Planta/enzimologia , Plântula/efeitos da radiação , Sementes/efeitos da radiação , Água/metabolismo , Zea mays/crescimento & desenvolvimento , Catalase/metabolismo , Catalase/efeitos da radiação , Clorofila/metabolismo , Clorofila/efeitos da radiação , Desidratação , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/efeitos da radiação , Peroxidases/metabolismo , Peroxidases/efeitos da radiação , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos da radiação , Chuva , Plântula/crescimento & desenvolvimento , Solo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/efeitos da radiação
16.
Plants (Basel) ; 11(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36432825

RESUMO

The inexorable process of climate change in terms of the rise in minimum (nighttime) temperature delineates its huge impact on crop plants. It can affect the yield and quality of various crops. We investigated the effect of high night temperature (HNT) (+2.3 °C over ambient) from booting to physiological maturity on the yield parameters, grain growth rate (GGR), starch content, composition, and flour rheological properties in early (HI 1544, HI 1563) and late-maturing (HD 2932) wheat genotypes. The change in yield under HNT was highly correlated with grain number per plant (r = 0.740 ***) and hundred-grain weight (r = 0.628 **), although the reduction in grain weight was not significantly different. This was also reflected as an insignificant change in starch content (except in HI 1544). Under HNT, late-sown genotypes (HI 1563 and HD 2932) maintained high GGR compared to the timely sown (HI 1544) genotype during the early period of grain growth (5 to 10 days after anthesis), which declined during the later phase of grain development. The increased rheological properties under HNT can be attributed to a significant reduction in the amylose to amylopectin (AMY/AMP) ratio in early-maturity genotypes (HI 1544 and HI 1563). The AMY/AMP ratio was positively correlated to flour rheological parameters (except setback from peak) under HNT. Our study reports the HNT-induced change in the amylose/amylopectin ratio in early maturing wheat genotypes, which determines the stability of flour starches for specific end-use products.

17.
Cells ; 11(14)2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35883617

RESUMO

In this study, the role of the signalling molecule nitric oxide (NO) in magnetopriming-mediated induction of salinity tolerance in soybean seeds is established. The cross-talk of NO with germination-related hormones gibberellic acid (GA), abscisic acid (ABA) and auxin (IAA) for their ability to reduce the Na+/K+ ratio in the seeds germinating under salinity is highlighted. Salt tolerance index was significantly high for seedlings emerging from magnetoprimed seeds and sodium nitroprusside (SNP, NO-donor) treatment. The NO and superoxide (O2•-) levels were also increased in both of these treatments under non-saline and saline conditions. NO generation through nitrate reductase (NR) and nitric oxide synthase-like (NOS-like) pathways indicated the major contribution of NO from the NR-catalysed reaction. The relative expression of genes involved in the NO biosynthetic pathways reiterated the indulgence of NR in NO in magnetoprimed seeds, as a 3.86-fold increase in expression was observed over unprimed seeds under salinity. A 23.26-fold increase in relative expression of NR genes by the NO donor (SNP) was observed under salinity, while the NR inhibitor (sodium tungstate, ST) caused maximum reduction in expression of NR genes as compared to other inhibitors [L-NAME (N(G)-nitro-L-arginine methyl ester; inhibitor of nitric oxide synthase-like enzyme) and DPI (diphenylene iodonium; NADPH oxidase inhibitor)]. The ratio of ABA/GA and IAA/GA decreased in magnetoprimed and NO donor-treated seeds, suggesting homeostasis amongst hormones during germination under salinity. The magnetoprimed seeds showed low Na+/K+ ratio in all treatments irrespective of NO inhibitors. Altogether, our results indicate that a balance of ABA, GA and IAA is maintained by the signalling molecule NO in magnetoprimed seeds which lowers the Na+/K+ ratio to offset the adverse effects of salinity in soybean seeds.


Assuntos
Glycine max , Reguladores de Crescimento de Plantas , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Hormônios/metabolismo , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estresse Salino , Sementes/metabolismo
18.
Front Nutr ; 9: 994813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438723

RESUMO

Scavenging ethylene is a useful intervention during the transportation and storage of tropical climacteric fruits like sapota. Sapota (Manilkara achras Mill.) is a delicious tropical fruit with a very high respiration rate and poor shelf life. To prolong its post-harvest shelf life, the use of palladium chloride in electrospun nanomats was evaluated at a concentration varying from 1 to 4% levels. Encapsulation of 1-2% PdCl2 in nanomats increased the ethylene scavenging capacity (ESC) by 47-68%. Although, upon encapsulation, both PdCl2 and potassium permanganate showed significantly the same ethylene scavenging activity, the efficacy of PdCl2 was found better in presence of sapota fruits. The PdCl2 nanomats were brighter (L* > 73) in colour compared to the potassium permanganate mat. The placement of nanomats (2 cm2 × 9 cm2) in corrugated fibre board boxes in which the sapota was packed showed higher quality indices (firmness, TSS, ascorbic acid, and phenolics) along with lower PLW and respiration rate during the 8 days of storage period. Compared to control (8.35%), physiological loss in weight of 4.47% was recorded in fruits stored with ethylene scavenging nanomats. PdCl2 encapsulated PVA nanomats can emerge as a promising option for the retention of quality in fruits during storage and transit.

19.
Chemosphere ; 287(Pt 1): 131957, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34450367

RESUMO

An increase in technological interventions and ruthless urbanization in the name of development has deteriorated our environment over time and caused the buildup of heavy metals (HMs) in the soil and water resources. These heavy metals are gaining increased access into our food chain through the plant and/or animal-based products, to adversely impact human health. The issue of how to restrict the entry of HMs or modulate their response in event of their ingress into the plant system is worrisome. The current knowledge on the interactive-regulatory role and contribution of different physical, biophysical, biochemical, physiological, and molecular factors that determine the heavy metal availability-uptake-partitioning dynamics in the soil-plant-environment needs to be updated. The present review critically analyses the interactive overlaps between different adaptation and tolerance strategies that may be causally related to their cellular localization, conjugation and homeostasis, a relative affinity for the transporters, rhizosphere modifications, activation of efflux pumps and vacuolar sequestration that singly or collectively determine a plant's response to HM stress. Recently postulated role of gaseous pollutants such as SO2 and other secondary metabolites in heavy metal tolerance, which may be regulated at the whole plant and/or tissue/cell is discussed to delineate and work towards a "not so heavy" response of plants to heavy metals present in the contaminated soils.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Plantas , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
20.
J Appl Genet ; 63(4): 651-662, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35972676

RESUMO

Sweet corn possessing recessive shrunken2 (sh2) gene is popular worldwide. Traditional sweet corn is poor in vitamin A and vitamin E. Plant breeders during the selection of sweet corn genotypes mainly emphasize on plant architecture and yield. Seed germination and seedling vigour play important role for early establishment in field, thereby increasing yield and income. Here, we analysed a set of 15 sh2-based biofortified sweet corn inbreds with crtRB1 (ß-carotene hydroxylase1) and vte4 (γ-tocopherol methyltransferase) genes and three traditional sh2-based sweet corn inbreds for nutritional quality, seed vigour and various physico-biochemical traits. The newly developed inbreds possessed significantly higher provitamin A (proA: 15.60 µg/g) and vitamin E [α-tocopherol (α-T): 20.42 µg/g] than the traditional sweet corn inbreds (proA: 2.51 µg/g, α-T: 11.16 µg/g). The biofortified sweet corn inbreds showed wide variation for germination (80.67-87.33%), vigour index-I (2097.17-2925.28 cm), vigour index-II (134.27-216.19 mg) and electrical conductivity (10.19-13.21 µS cm-1 g-1). Wide variation was also observed for dehydrogenase (1.29-1.59 OD g-1 ml-1), super oxide dismutase (4.01-9.82 g-1), peroxidase (11.66-16.47 µM min-1 g-1), esterase (22.98-34.76 nM min-1 g-1) and α-amylase (5.91-8.15 OD g-1 ml-1). Enrichment of proA and vitamin E in sweet corn did not affect seed vigour and physico-biochemical traits. Correlation analysis revealed that electrical conductivity and α-amylase activity was the reliable indicator for assessing seed germination and vigour. The study identified superior biofortified sweet corn genotypes that would contribute to better vigour and establishment in field. This is the first report of analysis of biofortified sweet corn genotypes for seed vigour and physico-biochemical traits.


Assuntos
Sementes , Zea mays , Zea mays/genética , Sementes/genética , Sementes/química , Germinação , Vitamina E/análise , alfa-Amilases/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA