RESUMO
BACKGROUND/AIMS: The voltage-gated potassium channel KV11.1 has been originally cloned from the brain and is expressed in a variety of tissues. The role of phosphorylation for channel function is a matter of debate. In this study, we aimed to elucidate the extent and role of protein kinase D mediated phosphorylation. METHODS: We employed mass spectrometry, whole-cell patch clamp electrophysiology, confocal microscopy, site-directed mutagenesis, and western blotting. RESULTS: Using brain tissue from rat and mouse, we mapped several phosphorylated KV11.1 residues by LC-MS mass spectrometry and identified protein kinase D (PKD1) as possible regulatory kinase. Co-expression of KV11.1 with PKD1 reduced current amplitudes without altering protein levels or surface expression of the channel. Based on LC-MS results from in vivo and HEK293 cell experiments we chose four KV11.1 mutant candidates for further functional analysis. Ablation of the putative PKD phosphorylation site in the mutant S284A increased the maximal current indicating S284 as a main PKD target in KV11.1. CONCLUSIONS: Our data might help mitigating a long-standing controversy in the field regarding PKC regulation of KV11.1. We propose that PKD1 mediates the PKC effects on KV11.1 and we found that PKD targets S284 in the N-terminus of the channel.
Assuntos
Encéfalo/metabolismo , Canal de Potássio ERG1/metabolismo , Proteína Quinase C/metabolismo , Substituição de Aminoácidos , Animais , Canal de Potássio ERG1/genética , Células HEK293 , Humanos , Camundongos , Mutação de Sentido Incorreto , Fosforilação/genética , Proteína Quinase C/genética , RatosRESUMO
INTRODUCTION: Atrial fibrillation (AF) is the most frequent cardiac arrhythmia. The potassium current IKs is essential for cardiac repolarization. Gain-of-function mutation in KCNQ1, the gene encoding the pore-forming α-subunit of the IKs channel (KV 7.1), was the first ion channel dysfunction to be associated with familial AF. We hypothesized that early-onset lone AF is associated with a high prevalence of mutations in KCNQ1. METHODS AND RESULTS: We bidirectionally sequenced the entire coding sequence of KCNQ1 in 209 unrelated patients with early-onset lone AF (<40 years) and investigated the identified mutations functionally in a heterologous expression system. We found 4 nonsynonymous KCNQ1 mutations (A46T, R195W, A302V, and R670K) in 4 unrelated patients (38, 31, 39, and 36 years, respectively). None of the mutations were present in the control group (n = 416 alleles). No other mutations were found in genes previously associated with AF. The mutations A46T, R195W, and A302V have previously been associated with long-QT syndrome. In line with previous reports, we found A302V to display a pronounced loss-of-function of the IKs current, while the other mutants exhibited a gain-of-function phenotype. CONCLUSIONS: Mutations in the IKs channel leading to gain-of-function have previously been described in familial AF, yet this is the first time a loss-of-function mutation in KCNQ1 is associated with early-onset lone AF. These findings suggest that both gain-of-function and loss-of-function of cardiac potassium currents enhance the susceptibility to AF.
Assuntos
Fibrilação Atrial/genética , Canal de Potássio KCNQ1/genética , Mutação , Potenciais de Ação , Adolescente , Adulto , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/terapia , Estudos de Casos e Controles , Linhagem Celular , Análise Mutacional de DNA , Dinamarca , Eletrocardiografia , Feminino , Predisposição Genética para Doença , Frequência Cardíaca , Humanos , Canal de Potássio KCNQ1/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Fenótipo , Potássio/metabolismo , Transfecção , Adulto JovemRESUMO
Epithelial cell polarization involves several kinase signaling cascades that eventually divide the surface membrane into an apical and a basolateral part. One kinase, which is activated during the polarization process, is phosphoinositide 3-kinase (PI3K). In MDCK cells, the basolateral potassium channel Kv7.1 requires PI3K activity for surface-expression during the polarization process. Here, we demonstrate that Kv7.1 surface expression requires tonic PI3K activity as PI3K inhibition triggers endocytosis of these channels in polarized MDCK. Pharmacological inhibition of SGK1 gave similar results as PI3K inhibition, whereas overexpression of constitutively active SGK1 overruled it, suggesting that SGK1 is the primary downstream target of PI3K in this process. Furthermore, knockdown of the ubiquitin ligase Nedd4-2 overruled PI3K inhibition, whereas a Nedd4-2 interaction-deficient Kv7.1 mutant was resistant to both PI3K and SGK1 inhibition. Altogether, these data suggest that a PI3K-SGK1 pathway stabilizes Kv7.1 surface expression by inhibiting Nedd4-2-dependent endocytosis and thereby demonstrates that Nedd4-2 is a key regulator of Kv7.1 localization and turnover in epithelial cells.
Assuntos
Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Canal de Potássio KCNQ1/biossíntese , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Cães , Endocitose/efeitos dos fármacos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Proteínas Imediatamente Precoces/genética , Canal de Potássio KCNQ1/genética , Células Madin Darby de Rim Canino , Mutação , Ubiquitina-Proteína Ligases Nedd4 , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genéticaRESUMO
Over the last years extensive kinase-mediated regulation of a number of voltage-gated potassium (Kv) channels important in cardiac electrophysiology has been reported. This includes regulation of Kv1.5, Kv7.1 and Kv11.1 cell surface expression, where the kinase-mediated regulation appears to center around the ubiquitin ligase Nedd4-2. In the present study we examined whether Kv1.4, constituting the cardiac Ito,s current, is subject to similar regulation. In the epithelial Madin-Darby Canine Kidney (MDCK) cell line, which constitutes a highly reproducible model system for addressing membrane targeting, we find, by confocal microscopy, that Kv1.4 cell surface expression is downregulated by activation of protein kinase C (PKC) and AMP-activated protein kinase (AMPK). In contrast, manipulating the activities of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and serum and glucocorticoid-regulated kinase 1 (SGK1) were without effect on channel localization. The PKC and AMPK-mediated downregulation of Kv1.4 membrane surface localization was confirmed by two-electrode voltage clamp in Xenopus laevis oocytes, where pharmacological activation of PKC and AMPK reduced Kv1.4 current levels. We further demonstrate that unlike related Kv channels, Kv1.4 current levels in Xenopus laevis oocytes are not reduced by co-expression of Nedd4-2, or the related Nedd4-1 ubiquitin ligase. In conclusion, we demonstrate that the surface expression of Kv1.4 is downregulated by the two kinases AMPK and PKC, but is unaffected by PI3K-SGK1 signaling, as well as Nedd4-1/Nedd4-2 activity. In the light of previous reports, our results demonstrate an impressive heterogeneity in the molecular pathways controlling the surface expression of highly related potassium channel subunits.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Canal de Potássio Kv1.4/metabolismo , Proteína Quinase C/metabolismo , Animais , Linhagem Celular , Cães , Células Madin Darby de Rim Canino/metabolismo , Xenopus laevisRESUMO
The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid rectifier K(+) current (IKur), is regulated through several pathways. Here we investigate if Kv1.5 surface expression is controlled by the 2 kinases PKC and AMPK, using Xenopus oocytes, MDCK cells and atrial derived HL-1 cells. By confocal microscopy combined with electrophysiology we demonstrate that PKC activation reduces Kv1.5 current, through a decrease in membrane expressed channels. AMPK activation was found to decrease the membrane expression in MDCK cells, but not in HL-1 cells and was furthermore shown to be dependent on co-expression of Nedd4-2 in Xenopus oocytes. These results indicate that Kv1.5 channels are regulated by both kinases, although through different molecular mechanisms in different cell systems.