Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 163(1): 160-73, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26406376

RESUMO

Focal adhesion kinase (FAK) promotes anti-tumor immune evasion. Specifically, the kinase activity of nuclear-targeted FAK in squamous cell carcinoma (SCC) cells drives exhaustion of CD8(+) T cells and recruitment of regulatory T cells (Tregs) in the tumor microenvironment by regulating chemokine/cytokine and ligand-receptor networks, including via transcription of Ccl5, which is crucial. These changes inhibit antigen-primed cytotoxic CD8(+) T cell activity, permitting growth of FAK-expressing tumors. Mechanistically, nuclear FAK is associated with chromatin and exists in complex with transcription factors and their upstream regulators that control Ccl5 expression. Furthermore, FAK's immuno-modulatory nuclear activities may be specific to cancerous squamous epithelial cells, as normal keratinocytes do not have nuclear FAK. Finally, we show that a small-molecule FAK kinase inhibitor, VS-4718, which is currently in clinical development, also drives depletion of Tregs and promotes a CD8(+) T cell-mediated anti-tumor response. Therefore, FAK inhibitors may trigger immune-mediated tumor regression, providing previously unrecognized therapeutic opportunities.


Assuntos
Carcinoma de Células Escamosas/imunologia , Quimiocina CCL5/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias Cutâneas/imunologia , Linfócitos T Reguladores/imunologia , Evasão Tumoral , Aminopiridinas/administração & dosagem , Animais , Carcinoma de Células Escamosas/metabolismo , Quimiocina CCL5/imunologia , Modelos Animais de Doenças , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/genética , Humanos , Queratinócitos/metabolismo , Camundongos , Camundongos Nus , Neoplasias Cutâneas/metabolismo , Transcrição Gênica
2.
Immunity ; 44(5): 1114-26, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27192577

RESUMO

Regulatory T (Treg) cells expressing Foxp3 transcripton factor are essential for immune homeostasis. They arise in the thymus as a separate lineage from conventional CD4(+)Foxp3(-) T (Tconv) cells. Here, we show that the thymic development of Treg cells depends on the expression of their endogenous cognate self-antigen. The formation of these cells was impaired in mice lacking this self-antigen, while Tconv cell development was not negatively affected. Thymus-derived Treg cells were selected by self-antigens in a specific manner, while autoreactive Tconv cells were produced through degenerate recognition of distinct antigens. These distinct modes of development were associated with the expression of T cell receptor of higher functional avidity for self-antigen by Treg cells than Tconv cells, a difference subsequently essential for the control of autoimmunity. Our study documents how self-antigens define the repertoire of thymus-derived Treg cells to subsequently endow this cell type with the capacity to undermine autoimmune attack.


Assuntos
Antígeno CTLA-4/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Glicoproteína Mielina-Oligodendrócito/metabolismo , Subpopulações de Linfócitos T/fisiologia , Linfócitos T Reguladores/fisiologia , Timo/imunologia , Animais , Autoantígenos/imunologia , Antígeno CTLA-4/genética , Células Cultivadas , Seleção Clonal Mediada por Antígeno , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T/genética
3.
Eur J Immunol ; 52(8): 1335-1349, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35579560

RESUMO

CD4+ FOXP3+ Tregs are currently explored to develop cell therapies against immune-mediated disorders, with an increasing focus on antigen receptor-engineered Tregs. Deciphering their mode of action is necessary to identify the strengths and limits of this approach. Here, we addressed this issue in an autoimmune disease of the CNS, EAE. Following disease induction, autoreactive Tregs upregulated LAG-3 and CTLA-4 in LNs, while IL-10 and amphiregulin (AREG) were increased in CNS Tregs. Using genetic approaches, we demonstrated that IL-10, CTLA-4, and LAG-3 were nonredundantly required for the protective function of antigen receptor-engineered Tregs against EAE in cell therapy whereas AREG was dispensable. Treg-derived IL-10 and CTLA-4 were both required to suppress acute autoreactive CD4+ T-cell activation, which correlated with disease control. These molecules also affected the accumulation in the recipients of engineered Tregs themselves, underlying complex roles for these molecules. Noteworthy, despite the persistence of the transferred Tregs and their protective effect, autoreactive T cells eventually accumulated in the spleen of treated mice. In conclusion, this study highlights the remarkable power of antigen receptor-engineered Tregs to appropriately provide multiple suppressive factors nonredundantly necessary to prevent autoimmune attacks.


Assuntos
Autoimunidade , Doenças do Sistema Imunitário , Animais , Antígeno CTLA-4 , Terapia Baseada em Transplante de Células e Tecidos , Fatores de Transcrição Forkhead/genética , Interleucina-10 , Camundongos , Receptores de Antígenos , Linfócitos T Reguladores
4.
Neuropathol Appl Neurobiol ; 49(1): e12851, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36181265

RESUMO

AIMS: Axonal injury in multiple sclerosis (MS) and experimental models is most frequently detected in acutely demyelinating lesions. We recently reported a compensatory neuronal response, where mitochondria move to the acutely demyelinated axon and increase the mitochondrial content following lysolecithin-induced demyelination. We termed this homeostatic phenomenon, which is also evident in MS, the axonal response of mitochondria to demyelination (ARMD). The aim of this study is to determine whether ARMD is consistently evident in experimental demyelination and how its perturbation relates to axonal injury. METHODS: In the present study, we assessed axonal mitochondrial content as well as axonal mitochondrial respiratory chain complex IV activity (cytochrome c oxidase or COX) of axons and related these to axonal injury in nine different experimental disease models. We used immunofluorescent histochemistry as well as sequential COX histochemistry followed by immunofluorescent labelling of mitochondria and axons. RESULTS: We found ARMD a consistent and robust phenomenon in all experimental disease models. The increase in mitochondrial content within demyelinated axons, however, was not always accompanied by a proportionate increase in complex IV activity, particularly in highly inflammatory models such as experimental autoimmune encephalomyelitis (EAE). Axonal complex IV activity inversely correlated with the extent of axonal injury in experimental disease models. CONCLUSIONS: Our findings indicate that ARMD is a consistent and prominent feature and emphasise the importance of complex IV activity in the context of ARMD, especially in autoimmune inflammatory demyelination, paving the way for the development of novel neuroprotective therapies.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Esclerose Múltipla/patologia , Axônios/patologia , Encefalomielite Autoimune Experimental/patologia , Neurônios/patologia , Mitocôndrias/patologia
5.
Am J Pathol ; 190(6): 1224-1235, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32201264

RESUMO

Intratracheal instillation of apoptotic cells enhances resolution of experimental lung inflammation by incompletely understood mechanisms. We report that this intervention induces functional regulatory T lymphocytes (Tregs) in mouse lung experimentally inflamed by intratracheal administration of lipopolysaccharide. Selective depletion demonstrated that Tregs were necessary for maximal apoptotic cell-directed enhancement of resolution, and adoptive transfer of additional Tregs was sufficient to promote resolution without administering apoptotic cells. After intratracheal instillation, labeled apoptotic cells were observed in most CD11c+CD103+ myeloid dendritic cells migrating to mediastinal draining lymph nodes and bearing migratory and immunoregulatory markers, including increased CCR7 and ß8 integrin (ITGB8) expression. In mice deleted for αv integrin in the myeloid line to reduce phagocytosis of dying cells by CD103+ dendritic cells, exogenous apoptotic cells failed to induce transforming growth factor-ß1 expression or Treg accumulation and failed to enhance resolution of lipopolysaccharide-induced lung inflammation. We conclude that in murine lung, myeloid phagocytes encountering apoptotic cells can deploy αv integrin-mediated mechanisms to induce Tregs and enhance resolution of acute inflammation.


Assuntos
Apoptose/fisiologia , Integrina alfaV/metabolismo , Pneumonia/metabolismo , Linfócitos T Reguladores/metabolismo , Transferência Adotiva , Animais , Fatores de Transcrição Forkhead/metabolismo , Ativação Linfocitária , Depleção Linfocítica , Camundongos , Fagocitose/fisiologia , Pneumonia/patologia
6.
Eur J Immunol ; 49(1): 112-120, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30485411

RESUMO

T cell adaptation is an important peripheral tolerogenic process which ensures that the T cell population can respond effectively to pathogens but remains tolerant to self-antigens. We probed the mechanisms of T cell adaptation using an experimental autoimmune encephalomyelitis (EAE) model in which the fate of autopathogenic T cells could be followed. We demonstrated that immunisation with a high dose of myelin basic protein (MBP) peptide and complete Freund's adjuvant failed to effectively initiate EAE, in contrast to low dose MBP peptide immunisation which readily induced disease. The proportion of autopathogenic CD4+ T cells in the central nervous system (CNS) of mice immunised with a high dose of MBP peptide was not significantly different to mice immunised with a low dose. However, autopathogenic T cells in mice immunised with high dose MBP peptide had an unresponsive phenotype in ex vivo recall assays. Importantly, whilst expression of PD-1 was increased on adapted CD4+ T cells within the CNS, loss of PD-1 function did not prevent the development of the unresponsive state. The lack of a role for PD-1 in the acquisition of the adapted state stands in striking contrast to the reported functional importance of PD-1 in T cell unresponsiveness in other disease models.


Assuntos
Sistema Nervoso Central/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Autoantígenos/imunologia , Células Cultivadas , Anergia Clonal , Modelos Animais de Doenças , Humanos , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Básica da Mielina/imunologia , Fragmentos de Peptídeos/imunologia , Regulação para Cima
7.
Acta Neuropathol ; 140(2): 143-167, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572598

RESUMO

Axonal loss is the key pathological substrate of neurological disability in demyelinating disorders, including multiple sclerosis (MS). However, the consequences of demyelination on neuronal and axonal biology are poorly understood. The abundance of mitochondria in demyelinated axons in MS raises the possibility that increased mitochondrial content serves as a compensatory response to demyelination. Here, we show that upon demyelination mitochondria move from the neuronal cell body to the demyelinated axon, increasing axonal mitochondrial content, which we term the axonal response of mitochondria to demyelination (ARMD). However, following demyelination axons degenerate before the homeostatic ARMD reaches its peak. Enhancement of ARMD, by targeting mitochondrial biogenesis and mitochondrial transport from the cell body to axon, protects acutely demyelinated axons from degeneration. To determine the relevance of ARMD to disease state, we examined MS autopsy tissue and found a positive correlation between mitochondrial content in demyelinated dorsal column axons and cytochrome c oxidase (complex IV) deficiency in dorsal root ganglia (DRG) neuronal cell bodies. We experimentally demyelinated DRG neuron-specific complex IV deficient mice, as established disease models do not recapitulate complex IV deficiency in neurons, and found that these mice are able to demonstrate ARMD, despite the mitochondrial perturbation. Enhancement of mitochondrial dynamics in complex IV deficient neurons protects the axon upon demyelination. Consequently, increased mobilisation of mitochondria from the neuronal cell body to the axon is a novel neuroprotective strategy for the vulnerable, acutely demyelinated axon. We propose that promoting ARMD is likely to be a crucial preceding step for implementing potential regenerative strategies for demyelinating disorders.


Assuntos
Doenças Desmielinizantes/patologia , Mitocôndrias/patologia , Esclerose Múltipla/patologia , Degeneração Neural/patologia , Neuroproteção/fisiologia , Animais , Axônios/patologia , Humanos , Camundongos , Biogênese de Organelas
8.
J Immunol ; 200(3): 1169-1187, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29263216

RESUMO

The disposal of apoptotic bodies by professional phagocytes is crucial to effective inflammation resolution. Our ability to improve the disposal of apoptotic bodies by professional phagocytes is impaired by a limited understanding of the molecular mechanisms that regulate the engulfment and digestion of the efferocytic cargo. Macrophages are professional phagocytes necessary for liver inflammation, fibrosis, and resolution, switching their phenotype from proinflammatory to restorative. Using sterile liver injury models, we show that the STAT3-IL-10-IL-6 axis is a positive regulator of macrophage efferocytosis, survival, and phenotypic conversion, directly linking debris engulfment to tissue repair.


Assuntos
Interleucina-10/metabolismo , Interleucina-6/metabolismo , Cirrose Hepática/patologia , Fígado/lesões , Macrófagos/imunologia , Fagocitose/imunologia , Fator de Transcrição STAT3/metabolismo , Transferência Adotiva , Animais , Apoptose/imunologia , Humanos , Fígado/patologia , Macrófagos/transplante , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose/imunologia , Regeneração/fisiologia , Peixe-Zebra/embriologia
9.
Nature ; 507(7492): 366-370, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24572363

RESUMO

B lymphocytes have critical roles as positive and negative regulators of immunity. Their inhibitory function has been associated primarily with interleukin 10 (IL-10) because B-cell-derived IL-10 can protect against autoimmune disease and increase susceptibility to pathogens. Here we identify IL-35-producing B cells as key players in the negative regulation of immunity. Mice in which only B cells did not express IL-35 lost their ability to recover from the T-cell-mediated demyelinating autoimmune disease experimental autoimmune encephalomyelitis (EAE). In contrast, these mice displayed a markedly improved resistance to infection with the intracellular bacterial pathogen Salmonella enterica serovar Typhimurium as shown by their superior containment of the bacterial growth and their prolonged survival after primary infection, and upon secondary challenge, compared to control mice. The increased immunity found in mice lacking IL-35 production by B cells was associated with a higher activation of macrophages and inflammatory T cells, as well as an increased function of B cells as antigen-presenting cells (APCs). During Salmonella infection, IL-35- and IL-10-producing B cells corresponded to two largely distinct sets of surface-IgM(+)CD138(hi)TACI(+)CXCR4(+)CD1d(int)Tim1(int) plasma cells expressing the transcription factor Blimp1 (also known as Prdm1). During EAE, CD138(+) plasma cells were also the main source of B-cell-derived IL-35 and IL-10. Collectively, our data show the importance of IL-35-producing B cells in regulation of immunity and highlight IL-35 production by B cells as a potential therapeutic target for autoimmune and infectious diseases. This study reveals the central role of activated B cells, particularly plasma cells, and their production of cytokines in the regulation of immune responses in health and disease.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Imunidade/imunologia , Interleucinas/metabolismo , Infecções por Salmonella/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos CD40/imunologia , Feminino , Humanos , Interleucina-10/metabolismo , Interleucinas/imunologia , Ativação Linfocitária , Macrófagos/citologia , Macrófagos/imunologia , Masculino , Camundongos , Plasmócitos/imunologia , Plasmócitos/metabolismo , Infecções por Salmonella/microbiologia , Linfócitos T/imunologia , Receptor 4 Toll-Like/imunologia
10.
Nucleic Acids Res ; 46(D1): D1091-D1106, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29149325

RESUMO

The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb, www.guidetopharmacology.org) and its precursor IUPHAR-DB, have captured expert-curated interactions between targets and ligands from selected papers in pharmacology and drug discovery since 2003. This resource continues to be developed in conjunction with the International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Pharmacological Society (BPS). As previously described, our unique model of content selection and quality control is based on 96 target-class subcommittees comprising 512 scientists collaborating with in-house curators. This update describes content expansion, new features and interoperability improvements introduced in the 10 releases since August 2015. Our relationship matrix now describes ∼9000 ligands, ∼15 000 binding constants, ∼6000 papers and ∼1700 human proteins. As an important addition, we also introduce our newly funded project for the Guide to IMMUNOPHARMACOLOGY (GtoImmuPdb, www.guidetoimmunopharmacology.org). This has been 'forked' from the well-established GtoPdb data model and expanded into new types of data related to the immune system and inflammatory processes. This includes new ligands, targets, pathways, cell types and diseases for which we are recruiting new IUPHAR expert committees. Designed as an immunopharmacological gateway, it also has an emphasis on potential therapeutic interventions.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Fenômenos do Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Animais , Humanos , Doenças do Sistema Imunitário/tratamento farmacológico , Ligantes , Farmacologia , Proteínas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA