Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Pharmacol Exp Ther ; 389(3): 313-314, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772716

RESUMO

We thank Dr. Weimer and her colleagues for their comments related to our recent work (Anding et al., 2023) and are grateful for the opportunity to further discuss the importance of efficient lysosomal targeting of enzyme-replacement therapies (ERT) for the treatment of Pompe disease. Patients with Pompe disease have mutations in the gene that encodes for acid α glucosidase (GAA), a lysosomal enzyme necessary for the breakdown of glycogen. The first-generation ERT, alglucosidase alfa, provides a lifesaving therapy for the severe form of the disease (infantile onset Pompe disease) and improves or stabilizes respiratory and motor function in patients with less severe disease (late onset Pompe disease). Despite these gains, significant unmet need remains, particularly in patients who display respiratory and motor decline following years of treatment. Poor tissue uptake and lysosomal targeting via inefficient binding of the cation-independent mannose-6-phosphate (M6P) receptor (CIMPR) in skeletal muscle contributed to this suboptimal treatment response, prompting the development of new ERTs with increased levels of M6P.


Assuntos
1-Desoxinojirimicina , Terapia de Reposição de Enzimas , Doença de Depósito de Glicogênio Tipo II , Manosefosfatos , alfa-Glucosidases , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Animais , Terapia de Reposição de Enzimas/métodos , Manosefosfatos/metabolismo , Camundongos , alfa-Glucosidases/uso terapêutico , alfa-Glucosidases/metabolismo , alfa-Glucosidases/administração & dosagem , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/uso terapêutico , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo
2.
J Pharmacol Exp Ther ; 387(2): 188-203, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37679046

RESUMO

Pompe disease is a rare glycogen storage disorder caused by a deficiency in the lysosomal enzyme acid α-glucosidase, which leads to muscle weakness, cardiac and respiratory failure, and early mortality. Alglucosidase alfa, a recombinant human acid α-glucosidase, was the first approved treatment of Pompe disease, but its uptake into skeletal muscle via the cation-independent mannose-6-phosphate (M6P) receptor (CIMPR) is limited. Avalglucosidase alfa has received marketing authorization in several countries for infantile-onset and/or late-onset Pompe disease. This recently approved enzyme replacement therapy (ERT) was glycoengineered to maximize CIMPR binding through high-affinity interactions with ∼7 bis-M6P moieties. Recently, small molecules like the glucosylceramide synthase inhibitor miglustat were reported to increase the stability of recombinant human acid α-glucosidase, and it was suggested that an increased serum half-life would result in better glycogen clearance. Here, the effects of miglustat on alglucosidase alfa and avalglucosidase alfa stability, activity, and efficacy in Pompe mice were evaluated. Although miglustat increased the stability of both enzymes in fluorescent protein thermal shift assays and when incubated in neutral pH buffer over time, it reduced their enzymatic activity by ∼50%. Improvement in tissue glycogen clearance and transcriptional dysregulation in Pompe mice correlated with M6P levels but not with miglustat coadministration. These results further substantiate the crucial role of CIMPR binding in lysosomal targeting of ERTs. SIGNIFICANCE STATEMENT: This work describes important new insights into the treatment of Pompe disease using currently approved enzyme replacement therapies (ERTs) coadministered with miglustat. Although miglustat increased the stability of ERTs in vitro, there was no positive impact to glycogen clearance and transcriptional correction in Pompe mice. However, increasing mannose-6-phosphate levels resulted in increased cell uptake in vitro and increased glycogen clearance and transcriptional correction in Pompe mice, further underscoring the crucial role of cation-independent mannose-6-phosphate receptor-mediated lysosomal targeting for ERTs.

3.
Chem Res Toxicol ; 24(11): 1853-61, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21939267

RESUMO

Retinoids are a class of compounds with structural similarity to vitamin A. These compounds inhibit the proliferation of many cancer cell lines but have had limited medical application as they are often toxic at therapeutic levels. Efforts to synthesize retinoids with a greater therapeutic index have met with limited success. 4-[(1E)-2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthalenyl)-1-propen-1-yl]benzoic acid (TTNPB) is one of the most biologically active all-trans-retinoic acid (atRA) analogues and is highly teratogenic. In this study, we show that modification of the TTNPB carboxyl group with an N-(4-hydroxyphenyl)amido (4HPTTNPB) or a 4-hydroxybenzyl (4HBTTNPB) group changes the activity of the compound in cell culture and in vivo. Unlike TTNPB, both compounds induce apoptosis in cancer cells and bind poorly to the retinoic acid receptors (RARs). Like the similarly modified all-trans-retinoic acid (atRA) analogues N-(4-hydroxyphenyl)retinamide (4-HPR/fenretinide) and 4-hydroxybenzylretinone (4-HBR), 4HBTTNPB is a potent activator of components of the ER stress pathway. The amide-linked analogue, 4HPTTNPB, is less toxic to developing embryos than the parent TTNPB, and most significantly, the 4-hydroxybenzyl-modified compound (4HBTTNPB) that cannot be hydrolyzed in vivo to the parent TTNPB compound is nearly devoid of teratogenic liability.


Assuntos
Antineoplásicos/síntese química , Benzoatos/síntese química , Neoplasias da Mama/tratamento farmacológico , Retículo Endoplasmático/efeitos dos fármacos , Fenretinida/uso terapêutico , Receptores do Ácido Retinoico/metabolismo , Retinoides/síntese química , Vitamina A/análogos & derivados , Administração Oral , Amidas/química , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzoatos/efeitos adversos , Benzoatos/uso terapêutico , Ligação Competitiva , Neoplasias da Mama/patologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Feminino , Fenretinida/síntese química , Humanos , Fenol/química , Gravidez , Ratos , Ratos Sprague-Dawley , Retinoides/efeitos adversos , Retinoides/uso terapêutico , Teratogênicos , Fator de Transcrição CHOP/biossíntese , Vitamina A/síntese química , Vitamina A/uso terapêutico
4.
J Cell Biol ; 220(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33891012

RESUMO

The VPS13 gene family consists of VPS13A-D in mammals. Although all four genes have been linked to human diseases, their cellular functions are poorly understood, particularly those of VPS13D. We generated and characterized knockouts of each VPS13 gene in HeLa cells. Among the individual knockouts, only VPS13D-KO cells exhibit abnormal mitochondrial morphology. Additionally, VPS13D loss leads to either partial or complete peroxisome loss in several transformed cell lines and in fibroblasts derived from a VPS13D mutation-carrying patient with recessive spinocerebellar ataxia. Our data show that VPS13D regulates peroxisome biogenesis.


Assuntos
Peroxissomos/genética , Peroxissomos/metabolismo , Proteínas/genética , Proteínas/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação/genética
5.
Cancer Res ; 67(13): 6270-7, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17616685

RESUMO

The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) induces apoptosis in a variety of cell lines and has shown promise as an anticancer agent both in vitro and in vivo. The clinical dose of 4-HPR, however, is limited by residual-associated toxicities, indicating a need for a less toxic drug. In this study, we show that 4-hydroxybenzylretinone (4-HBR), the unhydrolyzable analogue of 4-HPR, is effective in producing apoptosis in a variety of 4-HPR-sensitive cell lines, including breast cancer, neuroblastoma, and leukemia cells. We also show through the use of a pan-caspase inhibitor that this 4-HBR-induced apoptosis is dependent, at least in part, on caspase activity. 4-HBR is shown to exhibit binding to the retinoic acid receptors (RAR) at concentrations necessary to induce cell death and induces expression of all-trans-retinoic acid-responsive genes that can be blocked by a RAR pan-antagonist. However, through the use of this RAR pan-antagonist, 4-HBR-induced apoptosis and cell death is shown to be independent of the RAR signaling pathway. To further characterize the mechanism of action of 4-HBR, expression of the endoplasmic reticulum stress-induced genes GADD153 and Bcl-2-binding component 3 was examined. These mRNAs are shown to be rapidly induced in 4-HBR-treated and 4-HPR-treated breast cancer cells, and this up-regulation is also shown to be independent of the RARs. These results suggest that a stress-mediated apoptotic cascade is involved in the mechanism of action of these retinoids.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Apoptose , Fenretinida/análogos & derivados , Proteínas Proto-Oncogênicas/biossíntese , Receptores do Ácido Retinoico/metabolismo , Fator de Transcrição CHOP/biossíntese , Vitamina A/análogos & derivados , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Células HL-60 , Humanos , Hidrólise , Leucemia/metabolismo , RNA Mensageiro/metabolismo , Retinoides/metabolismo , Vitamina A/farmacologia
6.
Anticancer Res ; 38(8): 4403-4416, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30061204

RESUMO

BACKGROUND/AIM: N-(4-hydroxyphenyl)retinamide (4-HPR) is a synthetic retinoid, less toxic than the parent all-trans retinoic acid (RA). Unlike RA, 4-HPR induces apoptosis in tumor cells. Because 4-HPR can hydrolyze to liberate RA, a potent human teratogen, the unhydrolyzable ketone analog of 4-HPR, 4-hydroxybenzylretinone (4-HBR) has been prepared and has been found to cause apoptosis in tumor cells and shrink carcinogen-induced rat mammary tumors as 4-HPR does. Herein, we examined the mechanism whereby 4-HPR and 4-HBR induce apoptosis and death in breast cancer cells. MATERIALS AND METHODS: Gene expression profiling was conducted in MCF-7 cells over a 1.5- to 6-h time course and changes were validated by quantitative polymerase chain reaction (qPCR). Growth arrest and DNA damage-inducible protein 153 (GADD153 or C/EBP homologous protein, CHOP) was knocked down and the effect on 4-HPR-induced cell death and gene expression was assessed. 4-HPR synergy with tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL or Apo2 ligand) was also examined. RESULTS: Drug treatment induced increased expression of endoplasmic reticulum (ER) stress-related and pro-apoptotic genes. Gene expression changes were verified by qPCR in three invasive ductal breast carcinoma cell lines (MCF-7, T-47D, MDA-MB-231). GADD153 showed the largest increase in the microarray experiment; however, knockdown of GADD153 did not abrogate apoptosis and death. Genes related to the extrinsic pathway of apoptosis including a receptor for TRAIL, death receptor 5 (DR5), were up-regulated by drug treatment. A dose of 4-HPR that alone is ineffective in killing TRAIL-resistant MCF-7 cells, synergized with recombinant TRAIL to induce breast cancer cell death. CONCLUSION: 4-HPR and analogs might be useful in sensitizing tumor cells to death receptor agonists.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fenretinida/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Morte Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Transcrição CHOP/metabolismo , Tretinoína/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
Curr Biol ; 28(2): 287-295.e6, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29307555

RESUMO

The clearance of mitochondria by autophagy, mitophagy, is important for cell and organism health [1], and known to be regulated by ubiquitin. During Drosophila intestine development, cells undergo a dramatic reduction in cell size and clearance of mitochondria that depends on autophagy, the E1 ubiquitin-activating enzyme Uba1, and ubiquitin [2]. Here we screen a collection of putative ubiquitin-binding domain-encoding genes for cell size reduction and autophagy phenotypes. We identify the endosomal sorting complex required for transport (ESCRT) components TSG101 and Vps36, as well as the novel gene Vps13D. Vps13D is an essential gene that is necessary for autophagy, mitochondrial size, and mitochondrial clearance in Drosophila. Interestingly, a similar mitochondrial phenotype is observed in VPS13D mutant human cells. The ubiquitin-associated (UBA) domain of Vps13D binds K63 ubiquitin chains, and mutants lacking the UBA domain have defects in mitochondrial size and clearance and exhibit semi-lethality, highlighting the importance of Vps13D ubiquitin binding in both mitochondrial health and development. VPS13D mutant cells possess phosphorylated DRP1 and mitochondrial fission factor (MFF) as well as DRP1 association with mitochondria, suggesting that VPS13D functions downstream of these known regulators of mitochondrial fission. In addition, the large Vps13D mitochondrial and cell size phenotypes are suppressed by decreased mitochondrial fusion gene function. Thus, these results provide a previously unknown link between ubiquitin, mitochondrial size regulation, and autophagy.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Tamanho Mitocondrial/genética , Mitofagia/genética , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/fisiologia , Ubiquitina/metabolismo , Ubiquitinação
8.
Dev Cell ; 41(1): 10-22, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28399394

RESUMO

The selective clearance of organelles by autophagy is critical for the regulation of cellular homeostasis in organisms from yeast to humans. Removal of damaged organelles clears the cell of potentially toxic byproducts and enables reuse of organelle components for bioenergetics. Thus, defects in organelle clearance may be detrimental to the health of the cells, contributing to cancer, neurodegeneration, and inflammatory diseases. Organelle-specific autophagy can clear mitochondria, peroxisomes, lysosomes, ER, chloroplasts, and the nucleus. Here, we review our understanding of the mechanisms that regulate the clearance of organelles by autophagy and highlight gaps in our knowledge of these processes.


Assuntos
Autofagia , Organelas/metabolismo , Animais , Humanos , Mitofagia , Modelos Biológicos
9.
Curr Top Dev Biol ; 114: 67-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26431564

RESUMO

Macroautophagy (hereafter referred to as autophagy) is a process used by the cell to deliver cytoplasmic components to the lysosome for degradation. Autophagy is most often associated with cell survival, as it provides cells with molecular building blocks during periods of nutrient deprivation and also aids in the elimination of damaged organelles and protein aggregates. However, autophagy has also been implicated in cell death. Here, we review what is known about autophagy, its regulation, its role both in cell life and cell death, and what is known about autophagic cell death in vivo.


Assuntos
Autofagia/fisiologia , Caenorhabditis elegans/citologia , Morte Celular/fisiologia , Dictyostelium/citologia , Animais , Apoptose/fisiologia , Caenorhabditis elegans/fisiologia , Sobrevivência Celular , Dictyostelium/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Inanição , Vertebrados/fisiologia
10.
In Vitro Cell Dev Biol Anim ; 39(7): 273-4, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12964903

RESUMO

Using primers for the MCT118, YNZ22, and COL2A1 loci in polymerase chain reaction analysis we could distinguish among the approximately 20 cell lines routinely maintained in our laboratory. We also demonstrated that the cell line NB-1691 (a neuroblastoma) and its xenograft had an identical number of repeats at two loci. Rh30 (a rhabdomyosarcoma) made resistant to rapamycin was identical to its parent line and to a subline that had reverted to sensitivity after it was cultured without rapamycin in the medium.


Assuntos
Linhagem Celular Tumoral , Impressões Digitais de DNA , Repetições Minissatélites , Sequências Repetidas Terminais , Sequência de Bases , Primers do DNA , Humanos
11.
Bioorg Med Chem Lett ; 17(3): 836-40, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17112722

RESUMO

Using solid phase-assisted synthesis and purification, a 49 member library of analogs of the mammary tumor chemopreventive retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) has been prepared. After prescreening for growth inhibitory activity in human mammary tumor cells (MCF-7) in culture, most of those analogs which showed activity (12 of them) were assayed for apoptosis-inducing activity in the MCF-7 cells. At least 3 of the analogs (13, 24, and 28) showed activity approaching that of 4-HPR.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Fenretinida/análogos & derivados , Fenretinida/síntese química , Fenretinida/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Marcação In Situ das Extremidades Cortadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA