Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Neuropathol ; 148(1): 45, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305312

RESUMO

Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease with a mean survival time of three years. The 97% of the cases have TDP-43 nuclear depletion and cytoplasmic aggregation in motor neurons. TDP-43 prevents non-conserved cryptic exon splicing in certain genes, maintaining transcript stability, including ATG4B, which is crucial for autophagosome maturation and Microtubule-associated proteins 1A/1B light chain 3B (LC3B) homeostasis. In ALS mice (G93A), Atg4b depletion worsens survival rates and autophagy function. For the first time, we observed an elevation of LC3ylation in the CNS of both ALS patients and atg4b-/- mouse spinal cords. Furthermore, LC3ylation modulates the distribution of ATG3 across membrane compartments. Antisense oligonucleotides (ASOs) targeting cryptic exon restore ATG4B mRNA in TARDBP knockdown cells. We further developed multi-target ASOs targeting TDP-43 binding sequences for a broader effect. Importantly, our ASO based in peptide-PMO conjugates show brain distribution post-IV administration, offering a non-invasive ASO-based treatment avenue for neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas Relacionadas à Autofagia , Cisteína Endopeptidases , Proteínas de Ligação a DNA , Proteínas Associadas aos Microtúbulos , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Masculino , Medula Espinal/metabolismo , Medula Espinal/patologia , Autofagia/fisiologia , Camundongos Knockout , Splicing de RNA/genética , Feminino , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Oligonucleotídeos Antissenso/farmacologia
2.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612621

RESUMO

The objective of this study is to evaluate biomarkers for neurodegenerative disorders in adult SMA patients and their potential for monitoring the response to nusinersen. Biomarkers for neurodegenerative disorders were assessed in plasma and CSF samples obtained from a total of 30 healthy older adult controls and 31 patients with adult SMA type 2 and 3. The samples were collected before and during nusinersen treatment at various time points, approximately at 2, 6, 10, and 22 months. Using ELISA technology, the levels of total tau, pNF-H, NF-L, sAPPß, Aß40, Aß42, and YKL-40 were evaluated in CSF samples. Additionally, plasma samples were used to measure NF-L and total tau levels using SIMOA technology. SMA patients showed improvements in clinical outcomes after nusinersen treatment, which were statistically significant only in walkers, in RULM (p = 0.04) and HFMSE (p = 0.05) at 24 months. A reduction in sAPPß levels was found after nusinersen treatment, but these levels did not correlate with clinical outcomes. Other neurodegeneration biomarkers (NF-L, pNF-H, total tau, YKL-40, Aß40, and Aß42) were not found consistently changed with nusinersen treatment. The slow progression rate and mild treatment response of adult SMA types 2 and 3 may not lead to detectable changes in common markers of axonal degradation, inflammation, or neurodegeneration, since it does not involve large pools of damaged neurons as observed in pediatric forms. However, changes in biomarkers associated with the APP processing pathway might be linked to treatment administration. Further studies are warranted to better understand these findings.


Assuntos
Atrofia Muscular Espinal , Oligonucleotídeos , Atrofias Musculares Espinais da Infância , Humanos , Criança , Idoso , Proteína 1 Semelhante à Quitinase-3 , Biomarcadores
3.
J Neurochem ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37401737

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord. Glial cells, including astrocytes and microglia, have been shown to contribute to neurodegeneration in ALS, and metabolic dysfunction plays an important role in the progression of the disease. Glycogen is a soluble polymer of glucose found at low levels in the central nervous system that plays an important role in memory formation, synaptic plasticity, and the prevention of seizures. However, its accumulation in astrocytes and/or neurons is associated with pathological conditions and aging. Importantly, glycogen accumulation has been reported in the spinal cord of human ALS patients and mouse models. In the present work, using the SOD1G93A mouse model of ALS, we show that glycogen accumulates in the spinal cord and brainstem during symptomatic and end stages of the disease and that the accumulated glycogen is associated with reactive astrocytes. To study the contribution of glycogen to ALS progression, we generated SOD1G93A mice with reduced glycogen synthesis (SOD1G93A GShet mice). SOD1G93A GShet mice had a significantly longer life span than SOD1G93A mice and showed lower levels of the astrocytic pro-inflammatory cytokine Cxcl10, suggesting that the accumulation of glycogen is associated with an inflammatory response. Supporting this, inducing an increase in glycogen synthesis reduced life span in SOD1G93A mice. Altogether, these results suggest that glycogen in reactive astrocytes contributes to neurotoxicity and disease progression in ALS.

4.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047532

RESUMO

Transcriptomics and phosphoproteomics were carried out in the cerebral cortex of B6.Cg-Mapttm1(EGFP)Klt (tau knockout: tau-KO) and wild-type (WT) 12 month-old mice to learn about the effects of tau ablation. Compared with WT mice, tau-KO mice displayed reduced anxiety-like behavior and lower fear expression induced by aversive conditioning, whereas recognition memory remained unaltered. Cortical transcriptomic analysis revealed 69 downregulated and 105 upregulated genes in tau-KO mice, corresponding to synaptic structures, neuron cytoskeleton and transport, and extracellular matrix components. RT-qPCR validated increased mRNA levels of col6a4, gabrq, gad1, grm5, grip2, map2, rab8a, tubb3, wnt16, and an absence of map1a in tau-KO mice compared with WT mice. A few proteins were assessed with Western blotting to compare mRNA expression with corresponding protein levels. Map1a mRNA and protein levels decreased. However, ß-tubulin III and GAD1 protein levels were reduced in tau-KO mice. Cortical phosphoproteomics revealed 121 hypophosphorylated and 98 hyperphosphorylated proteins in tau-KO mice. Deregulated phosphoproteins were categorized into cytoskeletal (n = 45) and membrane proteins, including proteins of the synapses and vesicles, myelin proteins, and proteins linked to membrane transport and ion channels (n = 84), proteins related to DNA and RNA metabolism (n = 36), proteins connected to the ubiquitin-proteasome system (UPS) (n = 7), proteins with kinase or phosphatase activity (n = 21), and 22 other proteins related to variegated pathways such as metabolic pathways, growth factors, or mitochondrial function or structure. The present observations reveal a complex altered brain transcriptome and phosphoproteome in tau-KO mice with only mild behavioral alterations.


Assuntos
Proteostase , Proteínas tau , Camundongos , Animais , Camundongos Knockout , Proteínas tau/genética , Proteínas tau/metabolismo , Neurônios/metabolismo , Córtex Cerebral/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
5.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232365

RESUMO

Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease, both in its onset phenotype and in its rate of progression. The aim of this study was to establish whether the dysfunction of the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) measured through cerebrospinal fluid (CSF) proteins and the albumin-quotient (QAlb) are related to the speed of disease progression. An amount of 246 patients diagnosed with ALS were included. CSF and serum samples were determined biochemically for different parameters. Survival analysis based on phenotype shows higher probability of death for bulbar phenotype compared to spinal phenotype (p-value: 0.0006). For the effect of CSF proteins, data shows an increased risk of death for spinal ALS patients as the value of CSF proteins increases. The same model replicated for CSF albumin yielded similar results. Statistical models determined that the lowest cut-off value for CSF proteins able to differentiate patients with a good prognosis and worse prognosis corresponds to CSF proteins ≥ 0.5 g/L (p-value: 0.0189). For the CSF albumin, the QAlb ≥0.65 is associated with elevated probability of death (p-value: 0.0073). High levels of QAlb are a bad prognostic indicator for the spinal phenotype, in addition to high CSF proteins levels that also act as a marker of poor prognosis.


Assuntos
Esclerose Lateral Amiotrófica , Albuminas/metabolismo , Biomarcadores/metabolismo , Barreira Hematoencefálica/metabolismo , Proteínas do Líquido Cefalorraquidiano , Humanos , Prognóstico
6.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555581

RESUMO

Heterozygous hTau mice were used for the study of tau seeding. These mice express the six human tau isoforms, with a high predominance of 3Rtau over 4Rtau. The following groups were assessed: (i) non-inoculated mice aged 9 months (n = 4); (ii) Alzheimer's Disease (AD)-inoculated mice (n = 4); (iii) Globular Glial Tauopathy (GGT)-inoculated mice (n = 4); (iv) Pick's disease (PiD)-inoculated mice (n = 4); (v) control-inoculated mice (n = 4); and (vi) inoculated with vehicle alone (n = 2). AD-inoculated mice showed AT8-immunoreactive neuronal pre-tangles, granular aggregates, and dots in the CA1 region of the hippocampus, dentate gyrus (DG), and hilus, and threads and dots in the ipsilateral corpus callosum. GGT-inoculated mice showed unique or multiple AT8-immunoreactive globular deposits in neurons, occasionally extended to the proximal dendrites. PiD-inoculated mice showed a few loose pre-tangles in the CA1 region, DG, and cerebral cortex near the injection site. Coiled bodies were formed in the corpus callosum in AD-inoculated mice, but GGT-inoculated mice lacked globular glial inclusions. Tau deposits in inoculated mice co-localized active kinases p38-P and SAPK/JNK-P, thus suggesting active phosphorylation of the host tau. Tau deposits were absent in hTau mice inoculated with control homogenates and vehicle alone. Deposits in AD-inoculated hTau mice contained 3Rtau and 4Rtau; those in GGT-inoculated mice were mainly stained with anti-4Rtau antibodies, but a small number of deposits contained 3Rtau. Deposits in PiD-inoculated mice were stained with anti-3Rtau antibodies, but rare neuronal, thread-like, and dot-like deposits showed 4Rtau immunoreactivity. These findings show that tau strains produce different patterns of active neuronal seeding, which also depend on the host tau. Unexpected 3Rtau and 4Rtau deposits after inoculation of homogenates from 4R and 3R tauopathies, respectively, suggests the regulation of exon 10 splicing of the host tau during the process of seeding, thus modulating the plasticity of the cytoskeleton.


Assuntos
Doença de Alzheimer , Doença de Pick , Tauopatias , Humanos , Camundongos , Animais , Camundongos Transgênicos , Proteínas tau/genética , Proteínas tau/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo
7.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054902

RESUMO

Several studies have demonstrated the different characteristics of tau seeding and spreading following intracerebral inoculation in murine models of tau-enriched fractions of brain homogenates from AD and other tauopathies. The present study is centered on the importance of host tau in tau seeding and the molecular changes associated with the transformation of host tau into abnormal tau. The brains of three adult murine genotypes expressing different forms of tau-WT (murine 4Rtau), hTau (homozygous transgenic mice knock-out for murine tau protein and heterozygous expressing human forms of 3Rtau and 4Rtau proteins), and mtWT (homozygous transgenic mice knock-out for murine tau protein)-were analyzed following unilateral hippocampal inoculation of sarkosyl-insoluble tau fractions from the same AD and control cases. The present study reveals that (a) host tau is mandatory for tau seeding and spreading following tau inoculation from sarkosyl-insoluble fractions obtained from AD brains; (b) tau seeding does not occur following intracerebral inoculation of sarkosyl-insoluble fractions from controls; (c) tau seeding and spreading are characterized by variable genotype-dependent tau phosphorylation and tau nitration, MAP2 phosphorylation, and variable activation of kinases that co-localize with abnormal tau deposits; (d) transformation of host tau into abnormal tau is an active process associated with the activation of specific kinases; (e) tau seeding is accompanied by modifications in tau splicing, resulting in the expression of new 3Rtau and 4Rtau isoforms, thus indicating that inoculated tau seeds have the capacity to model exon 10 splicing of the host mapt or MAPT with a genotype-dependent pattern; (e) selective regional and cellular vulnerabilities, and different molecular compositions of the deposits, are dependent on the host tau of mice injected with identical AD tau inocula.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Genótipo , Hipocampo/metabolismo , Tauopatias/etiologia , Tauopatias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Biomarcadores , Encéfalo/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofluorescência , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Tauopatias/patologia
8.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742871

RESUMO

Altered protein phosphorylation is a major pathologic modification in tauopathies and Alzheimer's disease (AD) linked to abnormal tau fibrillar deposits in neurofibrillary tangles (NFTs) and pre-tangles and ß-amyloid deposits in AD. hTau transgenic mice, which express 3R and less 4R human tau with no mutations in a murine knock-out background, show increased tau deposition in neurons but not NFTs and pre-tangles at the age of nine months. Label-free (phospho)proteomics and SWATH-MS identified 2065 proteins in hTau and wild-type (WT) mice. Only six proteins showed increased levels in hTau; no proteins were down-regulated. Increased tau phosphorylation in hTau was detected at Ser199, Ser202, Ser214, Ser396, Ser400, Thr403, Ser404, Ser413, Ser416, Ser422, Ser491, and Ser494, in addition to Thr181, Thr231, Ser396/Ser404, but not at Ser202/Thr205. In addition, 4578 phosphopeptides (corresponding to 1622 phosphoproteins) were identified in hTau and WT mice; 64 proteins were differentially phosphorylated in hTau. Sixty proteins were grouped into components of membranes, membrane signaling, synapses, vesicles, cytoskeleton, DNA/RNA/protein metabolism, ubiquitin/proteasome system, cholesterol and lipid metabolism, and cell signaling. These results showed that over-expression of human tau without pre-tangle and NFT formation preferentially triggers an imbalance in the phosphorylation profile of specific proteins involved in the cytoskeletal-membrane-signaling axis.


Assuntos
Doença de Alzheimer , Proteínas tau , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Emaranhados Neurofibrilares/metabolismo , Fosforilação , Proteínas tau/genética , Proteínas tau/metabolismo
9.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563179

RESUMO

Alzheimer's disease (AD) and other tauopathies are common neurodegenerative diseases in older adults; in contrast, abnormal tau deposition in neurons and glial cells occurs only exceptionally in children. Sarkosyl-insoluble fractions from sporadic AD (sAD) containing paired helical filaments (PHFs) were inoculated unilaterally into the thalamus in newborn and three-month-old wild-type C57BL/6 mice, which were killed at different intervals from 24 h to six months after inoculation. Tau-positive cells were scanty and practically disappeared at three months in mice inoculated at the age of a newborn. In contrast, large numbers of tau-positive cells, including neurons and oligodendrocytes, were found in the thalamus of mice inoculated at three months and killed at the ages of six months and nine months. Mice inoculated at the age of newborn and re-inoculated at the age of three months showed similar numbers and distribution of positive cells in the thalamus at six months and nine months. This study shows that (a) differences in tau seeding between newborn and young adults may be related to the ratios between 3Rtau and 4Rtau, and the shift to 4Rtau predominance in adults, together with the immaturity of connections in newborn mice, and (b) intracerebral inoculation of sAD PHFs in newborn mice does not protect from tau seeding following intracerebral inoculation of sAD PHFs in young/adult mice.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Encéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Emaranhados Neurofibrilares/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
10.
J Neurochem ; 158(2): 482-499, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33905537

RESUMO

Nucleocytosolic transport, a membrane process, is impaired in motor neurons in amyotrophic lateral sclerosis (ALS). This study analyzes the nuclear lipidome in motor neurons in ALS and examines molecular pathways linked to the major lipid alterations. Nuclei were obtained from the frozen anterior horn of the lumbar spinal cord of ALS patients and age-matched controls. Lipidomic profiles of this subcellular fraction were obtained using liquid chromatography and mass spectrometry. We validated the mechanisms behind presumable lipidomic changes by exploring ALS surrogate models including human motor neurons (derived from ALS lines and controls) subjected to oxidative stress, the hSOD-G93A transgenic mice, and samples from an independent cohort of ALS patients. Among the differential lipid species, we noted 41 potential identities, mostly belonging to phospholipids (particularly ether phospholipids, as plasmalogens), as well as diacylglycerols and triacylglycerides. Decreased expression of alkyldihydroxyacetonephosphate synthase (AGPS)-a critical peroxisomal enzyme in plasmalogen synthesis-is found in motor neuron disease models; this occurs in parallel with an increase in the expression of sterol carrier protein 2 (SCP2) mRNA in ALS and Scp2 levels in G93A transgenic mice. Further, we identified diminished expression of diacylglycerol-related enzymes, such as phospholipase C ßI (PLCßI) and protein kinase CßII (PKCßII), linked to diacylglycerol metabolism. Finally, lipid droplets were recognized in the nuclei, supporting the identification of triacylglycerides as differential lipids. Our results point to the potentially pathogenic role of altered composition of nuclear membrane lipids and lipids in the nucleoplasm in the anterior horn of the spinal cord in ALS. Overall, these data support the usefulness of subcellular lipidomics applied to neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Núcleo Celular/genética , Lipidômica , Idoso , Animais , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Diglicerídeos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Estresse Oxidativo , Projetos Piloto , Medula Espinal/citologia , Medula Espinal/metabolismo , Frações Subcelulares/metabolismo , Superóxido Dismutase-1
11.
Neuropathol Appl Neurobiol ; 47(4): 544-563, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33332650

RESUMO

AIM: Peroxisomes play a key role in lipid metabolism, and peroxisome defects have been associated with neurodegenerative diseases such as X-adrenoleukodystrophy and Alzheimer's disease. This study aims to elucidate the contribution of peroxisomes in lipid alterations of area 8 of the frontal cortex in the spectrum of TDP43-proteinopathies. Cases of frontotemporal lobar degeneration-TDP43 (FTLD-TDP), manifested as sporadic (sFTLD-TDP) or linked to mutations in various genes including expansions of the non-coding region of C9ORF72 (c9FTLD), and of sporadic amyotrophic lateral sclerosis (sALS) as the most common TDP43 proteinopathies, were analysed. METHODS: We used transcriptomics and lipidomics methods to define the steady-state levels of gene expression and lipid profiles. RESULTS: Our results show alterations in gene expression of some components of peroxisomes and related lipid pathways in frontal cortex area 8 in sALS, sFTLD-TDP and c9FTLD. Additionally, we identify a lipidomic pattern associated with the ALS-FTLD-TDP43 proteinopathy spectrum, notably characterised by down-regulation of ether lipids and acylcarnitine among other lipid species, as well as alterations in the lipidome of each phenotype of TDP43 proteinopathy, which reveals commonalities and disease-dependent differences in lipid composition. CONCLUSION: Globally, lipid alterations in the human frontal cortex of the ALS-FTLD-TDP43 proteinopathy spectrum, which involve cell membrane composition and signalling, vulnerability against cellular stress and possible glucose metabolism, are partly related to peroxisome impairment.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Lobo Frontal/metabolismo , Metabolismo dos Lipídeos , Peroxissomos/metabolismo , Proteinopatias TDP-43/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo
12.
Neuropathol Appl Neurobiol ; 47(7): 1092-1108, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33955002

RESUMO

AIM: To delineate the neurogenetic profiles of brain degeneration patterns in myotonic dystrophy type I (DM1). METHODS: In two cohorts of DM1 patients, brain maps of volume loss (VL) and neuropsychological deficits (NDs) were intersected to large-scale transcriptome maps provided by the Allen Human Brain Atlas (AHBA). For validation, neuropathological and RNA analyses were performed in a small series of DM1 brain samples. RESULTS: Twofold: (1) From a list of preselected hypothesis-driven genes, confirmatory analyses found that three genes play a major role in brain degeneration: dystrophin (DMD), alpha-synuclein (SNCA) and the microtubule-associated protein tau (MAPT). Neuropathological analyses confirmed a highly heterogeneous Tau-pathology in DM1, different to the one in Alzheimer's disease. (2) Exploratory analyses revealed gene clusters enriched for key biological processes in the central nervous system, such as synaptic vesicle recycling, localization, endocytosis and exocytosis, and the serotonin and dopamine neurotransmitter pathways. RNA analyses confirmed synaptic vesicle dysfunction. CONCLUSIONS: The combination of large-scale transcriptome interactions with brain imaging and cognitive function sheds light on the neurobiological mechanisms of brain degeneration in DM1 that might help define future therapeutic strategies and research into this condition.


Assuntos
Encéfalo/patologia , Distrofina/metabolismo , Distrofia Miotônica/patologia , Vesículas Sinápticas/patologia , Proteínas tau/metabolismo , Adulto , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Sistema Nervoso Central/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Distrofia Miotônica/genética , Vesículas Sinápticas/metabolismo
14.
Acta Neuropathol ; 141(6): 841-859, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33881612

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune cell surface receptor that regulates microglial function and is involved in the pathophysiology of several neurodegenerative diseases. Its soluble form (sTREM2) results from shedding of the TREM2 ectodomain. The role of TREM2 in prion diseases, a group of rapidly progressive dementias remains to be elucidated. In the present study, we analysed the expression of TREM2 and its main sheddase ADAM10 in the brain of sporadic Creutzfeldt-Jakob disease (sCJD) patients and evaluated the role of CSF and plasma sTREM2 as a potential diagnostic marker of prion disease. Our data indicate that, compared to controls, TREM2 is increased in sCJD patient brains at the mRNA and protein levels in a regional and subtype dependent fashion, and expressed in a subpopulation of microglia. In contrast, ADAM10 is increased at the protein, but not the mRNA level, with a restricted neuronal expression. Elevated CSF sTREM2 is found in sCJD, genetic CJD with mutations E200K and V210I in the prion protein gene (PRNP), and iatrogenic CJD, as compared to healthy controls (HC) (AUC = 0.78-0.90) and neurological controls (AUC = 0.73-0.85), while CSF sTREM2 is unchanged in fatal familial insomnia. sTREM2 in the CSF of cases with Alzheimer's disease, and multiple sclerosis was not significantly altered in our series. CSF sTREM2 concentrations in sCJD are PRNP codon 129 and subtype-related, correlate with CSF 14-3-3 positivity, total-tau and YKL-40, and increase with disease progression. In plasma, sTREM2 is increased in sCJD compared with HC (AUC = 0.80), displaying positive correlations with plasma total-tau, neurofilament light, and YKL-40. We conclude that comparative study of TREM2 in brain and biological fluids of prion diseases reveals TREM2 to be altered in human prion diseases with a potential value in target engagement, patient stratification, and disease monitoring.


Assuntos
Proteína ADAM10 , Encéfalo , Glicoproteínas de Membrana , Doenças Priônicas , Receptores Imunológicos , Proteína ADAM10/sangue , Proteína ADAM10/líquido cefalorraquidiano , Proteína ADAM10/metabolismo , Doença de Alzheimer/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Glicoproteínas de Membrana/sangue , Glicoproteínas de Membrana/líquido cefalorraquidiano , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Proteínas Priônicas/metabolismo , Receptores Imunológicos/sangue , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
15.
Acta Neuropathol ; 139(4): 735-771, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31907603

RESUMO

Globular glial tauopathy (GGT) is a progressive neurodegenerative disease involving the grey matter and white matter (WM) and characterized by neuronal deposition of hyper-phosphorylated, abnormally conformed, truncated, oligomeric 4Rtau in neurons and in glial cells forming typical globular astrocyte and oligodendrocyte inclusions (GAIs and GOIs, respectively) and coiled bodies. Present studies centre on four genetic GGT cases from two unrelated families bearing the P301T mutation in MAPT and one case of sporadic GGT (sGGT) and one case of GGT linked to MAPT K317M mutation, for comparative purposes. Clinical and neuropathological manifestations and biochemical profiles of phospho-tau are subjected to individual variations in patients carrying the same mutation, even in carriers of the same family, independently of the age of onset, gender, and duration of the disease. Immunohistochemistry, western blotting, transcriptomic, proteomics and phosphoproteomics, and intra-cerebral inoculation of brain homogenates to wild-type (WT) mice were the methods employed. In GGT cases linked to MAPT P301T mutation, astrocyte markers GFAP, ALDH1L1, YKL40 mRNA and protein, GJA1 mRNA, and AQ4 protein are significantly increased; glutamate transporter GLT1 (EAAT2) and glucose transporter (SLC2A1) decreased; mitochondrial pyruvate carrier 1 (MPC1) increased, and mitochondrial uncoupling protein 5 (UCP5) almost absent in GAIs in frontal cortex (FC). Expression of oligodendrocyte markers OLIG1 and OLIG2mRNA, and myelin-related genes MBP, PLP1, CNP, MAG, MAL, MOG, and MOBP are significantly decreased in WM; CNPase, PLP1, and MBP antibodies reveal reduction and disruption of myelinated fibres; and SMI31 antibodies mark axonal damage in the WM. Altered expression of AQ4, GLUC-t, and GLT-1 is also observed in sGGT and in GGT linked to MAPT K317M mutation. These alterations point to primary astrogliopathy and oligodendrogliopathy in GGT. In addition, GGT linked to MAPT P301T mutation proteotypes unveil a proteostatic imbalance due to widespread (phospho)proteomic dearrangement in the FC and WM, triggering a disruption of neuron projection morphogenesis and synaptic transmission. Identification of hyper-phosphorylation of variegated proteins calls into question the concept of phospho-tau-only alteration in the pathogenesis of GGT. Finally, unilateral inoculation of sarkosyl-insoluble fractions of GGT homogenates from GGT linked to MAPT P301T, sGGT, and GGT linked to MAPT K317M mutation in the hippocampus, corpus callosum, or caudate/putamen in wild-type mice produces seeding, and time- and region-dependent spreading of phosphorylated, non-oligomeric, and non-truncated 4Rtau and 3Rtau, without GAIs and GOIs but only of coiled bodies. These experiments prove that host tau strains are important in the modulation of cellular vulnerability and phenotypes of phospho-tau aggregates.


Assuntos
Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/genética , Adulto , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mutação , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas tau/metabolismo
16.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167591

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by progressive muscle paralysis due to the degeneration of upper and lower motor neurons. Recent studies point out an involvement of the non-motor axis during disease progression. Despite smell impairment being considered a potential non-motor finding in ALS, the pathobiochemistry at the olfactory level remains unknown. Here, we applied an olfactory quantitative proteotyping approach to analyze the magnitude of the olfactory bulb (OB) proteostatic imbalance in ALS subjects (n = 12) with respect to controls (n = 8). Around 3% of the quantified OB proteome was differentially expressed, pinpointing aberrant protein expression involved in vesicle-mediated transport, macroautophagy, axon development and gliogenesis in ALS subjects. The overproduction of olfactory marker protein (OMP) points out an imbalance in the olfactory signal transduction in ALS. Accompanying the specific overexpression of glial fibrillary acidic protein (GFAP) and Bcl-xL in the olfactory tract (OT), a tangled disruption of signaling routes was evidenced across the OB-OT axis in ALS. In particular, the OB survival signaling dynamics clearly differ between ALS and frontotemporal lobar degeneration (FTLD), two faces of TDP-43 proteinopathy. To the best of our knowledge, this is the first report on high-throughput molecular characterization of the olfactory proteostasis in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Bulbo Olfatório/metabolismo , Idoso , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Transtornos do Olfato/metabolismo , Transtornos do Olfato/fisiopatologia , Bulbo Olfatório/fisiopatologia , Proteoma/metabolismo , Proteômica/métodos , Transdução de Sinais
17.
Int J Mol Sci ; 21(9)2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370224

RESUMO

Neuroinflammation has been correlated with the progress of neurodegeneration in many neuropathologies. Although glial cells have traditionally been considered to be protective, the concept of them as neurotoxic cells has recently emerged. Thus, a major unsolved question is the exact role of astroglia and microglia in neurodegenerative disorders. On the other hand, it is well known that glucocorticoids are the first choice to regulate inflammation and, consequently, neuroglial inflammatory activity. The objective of this study was to determine how chronic dexamethasone treatment influences the host immune response and to characterize the beneficial or detrimental role of glial cells. To date, this has not been examined using a natural neurodegenerative model of scrapie. With this aim, immunohistochemical expression of glial markers, prion protein accumulation, histopathological lesions and clinical evolution were compared with those in a control group. The results demonstrated how the complex interaction between glial populations failed to compensate for brain damage in natural conditions, emphasizing the need for using natural models. Additionally, the data showed that modulation of neuroinflammation by anti-inflammatory drugs might become a research focus as a potential therapeutic target for prion diseases, similar to that considered previously for other neurodegenerative disorders classified as prion-like diseases.


Assuntos
Astrócitos/efeitos dos fármacos , Dexametasona/farmacologia , Microglia/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Scrapie/fisiopatologia , Animais , Anti-Inflamatórios/farmacologia , Astrócitos/citologia , Astrócitos/metabolismo , Feminino , Estimativa de Kaplan-Meier , Microglia/citologia , Microglia/metabolismo , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/fisiopatologia , Neuroglia/metabolismo , Proteínas Priônicas/metabolismo , Scrapie/diagnóstico , Scrapie/metabolismo , Ovinos
18.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213069

RESUMO

Sporadic amyotrophic lateral sclerosis (sALS) is a fatal progressive neurodegenerative disease affecting upper and lower motor neurons. Biomarkers are useful to facilitate the diagnosis and/or prognosis of patients and to reveal possible mechanistic clues about the disease. This study aimed to identify and validate selected putative biomarkers in the cerebrospinal fluid (CSF) of sALS patients at early disease stages compared with age-matched controls and with other neurodegenerative diseases including Alzheimer disease (AD), spinal muscular atrophy type III (SMA), frontotemporal dementia behavioral variant (FTD), and multiple sclerosis (MS). SWATH acquisition on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for protein quantitation, and ELISA for validation, were used in CSF samples of sALS cases at early stages of the disease. Analysis of mRNA and protein expression was carried out in the anterior horn of the lumbar spinal cord in post-mortem tissue of sALS cases (terminal stage) and controls using RTq-PCR, and Western blotting, and immunohistochemistry, respectively. SWATH acquisition on liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed 51 differentially expressed proteins in the CSF in sALS. Receiver operating characteristic (ROC) curves showed CXCL12 to be the most valuable candidate biomarker. We validated the values of CXCL12 in CSF with ELISA in two different cohorts. Besides sALS, increased CXCL12 levels were found in MS but were not altered in AD, SMA, and FTD. Therefore, increased CXCL12 levels in the CSF can be useful in the diagnoses of MS and sALS in the context of the clinical settings. CXCL12 immunoreactivity was localized in motor neurons in control and sALS, and in a few glial cells in sALS at the terminal stage; CXCR4 was in a subset of oligodendroglial-like cells and axonal ballooning of motor neurons in sALS; and CXCR7 in motor neurons in control and sALS, and reactive astrocytes in the pyramidal tracts in terminal sALS. CXCL12/CXCR4/CXCR7 axis in the spinal cord probably plays a complex role in inflammation, oligodendroglial and astrocyte signaling, and neuronal and axonal preservation in sALS.


Assuntos
Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Quimiocina CXCL12/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Feminino , Demência Frontotemporal/líquido cefalorraquidiano , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Neuroglia/metabolismo , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismo
20.
J Neurol ; 271(4): 1599-1609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38085343

RESUMO

BACKGROUND AND OBJECTIVES: Serum biomarkers are emerging as useful prognostic tools for multiple sclerosis (MS); however, long-term studies are lacking. We aimed to evaluate the long-term prognostic value of the serum levels of neurofilament light chain (NfL), total tau, glial fibrillary acidic protein (GFAP), and chitinase 3-like-1 (CHI3L1) measured close to the time of MS onset. METHODS: In this retrospective, exploratory, observational, case and controls study, patients with relapsing-remitting MS (RRMS) with available baseline serum samples and prospectively follow-up in our MS unit for a long time were selected based on their clinical evolution to form two groups: (1) a benign RRMS (bRRMS) group, defined as patients with an Expanded Disability Status Scale (EDSS) score of ≤ 3 at ≥ 10 years of follow-up; (2) an aggressive RRMS (aRRMS) group, defined as patients with an EDSS score of ≥ 6 at ≤ 15 years of follow-up. An age-matched healthy control (HC) group was selected. NfL, total tau, and GFAP serum levels were quantified using a single-molecule array (SIMOA), and CHI3L1 was quantified using ELISA. RESULTS: Thirty-one patients with bRRMS, 19 with aRRMS, and 10 HC were included. The median follow-up time from sample collection was 17.74 years (interquartile range, 14.60-20.37). Bivariate and multivariate analyses revealed significantly higher NfL and GFAP levels in the aRRMS group than in the bRRMS group. A receiver operating characteristic curve analysis identified serum NfL level as the most efficient marker for distinguishing aRRMS from bRRMS. DISCUSSION: This proof-of-concept study comparing benign and aggressive RRMS groups reinforces the potential role of baseline NfL serum levels as a promising long-term disability prognostic marker. In contrast, serum GFAP, total tau, and CHI3L1 levels demonstrated a lower or no ability to differentiate between the long-term outcomes of RRMS.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Estudos Retrospectivos , Seguimentos , Filamentos Intermediários , Biomarcadores , Proteínas de Neurofilamentos , Proteína Glial Fibrilar Ácida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA