RESUMO
In this work, alpha-tocopherol (α-TOC) was encapsulated in poly(lactic acid) nanoparticles (PLA NPs) and added to low-density polyethylene (LDPE) films with the aim of producing an active film for food packaging applications. PLA NPs loaded with α-TOC were produced through nanoprecipitation and dried using two methods (freeze-dryer and oven). LDPE-based films with final polymeric matrix concentrations of 10 and 20 g/kg were then produced through blow extrusion. The results showed that LDPE-based films loaded with α-TOC can be produced using blow extrusion, and a good distribution of PLA NPs can be obtained within the LDPE matrix as observed using scanning electron microscopy (SEM). The mechanical properties were affected by the incorporation of α-TOC and PLA NPs loaded with α-TOC, with the observation of a decrease in tensile strength and Young's Modulus values and an increase in elongation at break. Regarding water vapor permeability, the films showed a reduction in the values with the addition of α-TOC and PLA NPs loaded with α-TOC compared to the LDPE film (control). Films with α-TOC in the free state and loaded in PLA NPs showed antioxidant activity, but their behavior was affected by the encapsulation process.
RESUMO
Low-density polyethylene-based packaging with 4% lemon extract (LDPE/4LE) and two polylactic-based (PLA) packaging materials with 4% and 6% lemon extract (PLA/PEG/4LE and PLA/6LE) were produced. O2 and water permeability tests were performed, the total and individual phenolic compounds content were measured, and the films' antioxidant activities were determined. The films' ability to delay lipid oxidation was tested in two model foods: almonds, packaged with LDPE/4LE, PLA/4LE and PLA/6LE for a maximum period of 60 days at 40 °C (accelerated assay); and beef meat, packaged with the PLA/6LE for a maximum period of 11 days at 4 °C. The LE improved the WVP in all of the active films by 33%, 20% and 60% for the LDPE/4LE, PLA/4LE and PLA/6LE films, respectively. At the end of 10 days, the migration of phenolic compounds through the PLA films was measured to be 142.27 and 114.9 µg/dm2 for the PLA/4LE and PLA/6LE films, respectively, and was significantly higher than phenolic compounds migration measured for the LDPE/4LE (15.97 µg/dm2). Naringenin, apigenin, ferulic acid, eriocitrin, hesperidin and 4-hydroxybenzoic acid were the main identified compounds in the PLA, but only 4-hydroxybenzoic acid, naringenin and p-coumaric acid were identified in the LDPE films. Regarding the films' ability to delay lipid oxidation, LDPE/4LE presented the best results, showing a capacity to delay lipid oxidation in almonds for 30 days. When applied to raw beef meat, the PLA/6LE packaging was able to significantly inhibit lipid oxidation for 6 days, and successfully inhibited total microorganisms' growth until the 8th day of storage.
RESUMO
Citrus production produces about 15 million tons of by-products/waste worldwide every year. Due to their high content of bioactive compounds, several extraction techniques can be applied to obtain extracts rich in valuable compounds and further application into food applications. Distillation and solvent extraction continues to be the most used and applied extraction techniques, followed by newer techniques such as microwave-assisted extraction and pulsed electric field extraction. Although the composition of these extracts and essential oils directly depends on the edaphoclimatic conditions to which the fruit/plant was exposed, the main active compounds are D-limonene, carotenoids, and carbohydrates. Pectin, one of the most abundant carbohydrates present in Citrus peels, can be used as a biodegradable polymer to develop new food packaging, and the extracted bioactive compounds can be easily added directly or indirectly to foods to increase their shelf-life. One of the applications is their incorporation in active food packaging for microbiological and/or oxidation inhibition, prolonging foods' shelf-life and, consequently, contributing to reducing food spoilage. This review highlights some of the most used and effective extraction techniques and the application of the obtained essential oils and extracts directly or indirectly (through active packaging) to foods.
RESUMO
Fruit by-products have a low economic value and have proven biological activities, such as antioxidant capacity due to the presence of active compounds. The main objective of this study was to obtain and determine the antioxidant capacity, through DPPH radical assay and ß-carotene bleaching assay, of three food grade extracts from apple, lemon, and orange industrial by-products. Furthermore, the extracts were characterized by ultra-high performance liquid chromatography coupled to mass spectrometry (UHPLC-MS/MS). LC with diode array detector (LC-DAD) was used for the quantification of the main polyphenols. Lemon extract presented the highest inhibition percentage of DPPH radical (51.7%) and the highest total phenolics content (43.4 mg GAE/g) from the by-products studied. Orange by-product was that with the higher number of polyphenols while lemon extract was that with the highest content of individual phenolics. The by-product obtained from the lemon was that with higher amounts of hydroxycinnamic acids (407 µg/g of by-product), mainly chlorogenic acid (386.7 µg/g), followed by the apple by-product (128.0 µg/g of by-product), which showed higher amounts of rosmarinic and chlorogenic acids. These industrial by-products have great potential as a source of natural antioxidants to be used directly as food additives or to be incorporated in packaging to produce active food packaging.
RESUMO
Antioxidant compounds from cyanobacteria may constitute a natural alternative to current synthetic antioxidants, which contain preservatives and suspected toxicity. In this work, we evaluate the antioxidant potential of cyanobacterial strains of distinct species/genus isolated from freshwater (n = 6), soil (n = 1) and wastewater (n = 1) environments. Lyophilized biomass obtained from in-vitro cultures of those strains was extracted with ethanol and methanol. The antioxidant potential was evaluated by chemical (DPPH scavenging method, ß-carotene bleaching assay, determination of total phenolic and total flavonoid compounds) and biological (H2O2-exposed HEK293T cell line model) approach. Some strains showed high yields of antioxidant activity by the DPPH assay (up to 10.7% IP/20.7 TE µg/mL) and by the ß-carotene bleaching assay (up to 828.94 AAC), as well as significant content in phenolic (123.16 mg EAG/g DW) and flavonoid (900.60 mg EQR/g DW) compounds. Normalization of data in a "per cell" or "per cell volume" base might facilitate the comparison between strains. Additionally, most of the cyanobacterial extracts conferred some degree of protection to HEK293T cells against the H2O2-induced cytotoxicity. Freshwater Aphanizomenon gracile (LMECYA 009) and Aphanizomenon flos-aquae (LMECYA 088), terrestrial Nostoc (LMECYA 291) and wastewater Planktothrix mougeotii (LEGE 06224) seem to be promising strains for further investigation on cyanobacteria antioxidant potential.
Assuntos
Antioxidantes/metabolismo , Biotecnologia/tendências , Cianobactérias/metabolismo , Citoproteção/fisiologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citoproteção/efeitos dos fármacos , Células HEK293 , Humanos , Peróxido de Hidrogênio/farmacologiaRESUMO
Cardoon, Cynara cardunculus L., is a perennial plant whose flowers are used as vegetal rennet in cheese making. Cardoon is native from the Mediterranean area and is commonly used in the preparation of salads and soup dishes. Nowadays, cardoon is also being exploited for the production of energy, generating large amount of wastes, mainly leaves. These wastes are rich in bioactive compounds with important health benefits. The aim of this review is to highlight the main properties of cardoon leaves according to the current research and to explore its potential uses in different sectors, namely the food industry. Cardoon leaves are recognized to have potential health benefits. In fact, some studies indicated that cardoon leaves could have diuretic, hepato-protective, choleretic, hypocholesterolemic, anti-carcinogenic, and antibacterial properties. Most of these properties are due to excellent polyphenol profiles, with interesting antioxidant and antimicrobial activities. These findings indicate that cardoon leaves can have new potential uses in different sectors, such as cosmetics and the food industry; in particular, they can be used for the preparation of extracts to incorporate into active food packaging. In the future, these new uses of cardoon leaves will allow for zero waste of this crop.
RESUMO
Active packaging aims to prolong food's shelf-life by directly interacting with the packaged food. This type of packaging is characterized by having the active agent incorporated into the package polymer, such as antioxidant additives, that will gradually migrate from the package polymer to the packed food and, consequently, delay food's natural lipid oxidation. In this study, the efficiency of an active whey protein film incorporated with a rosemary extract on retarding the lipid oxidation of salami slices was evaluated. The lipid oxidation of the salami was measured by the thiobarbituric acid reactive substances (TBARS) assay and hexanal monitorization. Also, a sensory analysis on the salami packaged for 60 and 90 days was performed. The active film was able to delay the salami's lipid oxidation for, at least, 30 days. The samples packaged with the active film revealed a bitter taste related to the rosemary extract and a bit sweet from the WP and the glycerol.
RESUMO
Active packaging is becoming progressively more significant as a response to the dynamic changes in current consumer demand and market tendencies. Active packaging is projected to interact directly with the packaged food or with the headspace within the package with the aim of maintaining or extending product quality and shelf-life. Aiming for sustainability, the potential application as biodegradable films of whey protein concentrate (WPC) was evaluated. Aromatic plant's extracts present high antioxidant properties, representing an alternative for synthetic food additives. The main objective of this study was to verify the effectiveness of an edible WPC film incorporated with a plant-based extract on retarding the lipid oxidation of fresh salmon. Green tea extract (GTE) was chosen to be incorporated into the active film. Fresh salmon was packaged with the control film (WPC) and with active film (WPC-GTE). The oxidation level of non-packaged samples and packaged samples were tested for different storage times. Four methods were applied to evaluate lipid oxidation state of fresh salmon: peroxide value, p-anisidine value, thiobarbituric acid reactive substances (TBARS) assay, and monitoring of hexanal. The results obtained in this study indicate that the whey protein active film was successfully produced, and it was effective in delaying lipid oxidation of fresh salmon samples until the 14th day of storage.