Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 84: 465-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25839340

RESUMO

Magic angle spinning (MAS) NMR studies of amyloid and membrane proteins and large macromolecular complexes are an important new approach to structural biology. However, the applicability of these experiments, which are based on (13)C- and (15)N-detected spectra, would be enhanced if the sensitivity were improved. Here we discuss two advances that address this problem: high-frequency dynamic nuclear polarization (DNP) and (1)H-detected MAS techniques. DNP is a sensitivity enhancement technique that transfers the high polarization of exogenous unpaired electrons to nuclear spins via microwave irradiation of electron-nuclear transitions. DNP boosts NMR signal intensities by factors of 10(2) to 10(3), thereby overcoming NMR's inherent low sensitivity. Alternatively, it permits structural investigations at the nanomolar scale. In addition, (1)H detection is feasible primarily because of the development of MAS rotors that spin at frequencies of 40 to 60 kHz or higher and the preparation of extensively (2)H-labeled proteins.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Amiloide/química , Bactérias/química , Humanos , Hidrogênio/análise , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular/instrumentação
2.
Photosynth Res ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538911

RESUMO

The largest light-harvesting antenna in nature, the chlorosome, is a heterogeneous helical BChl self-assembly that has evolved in green bacteria to harvest light for performing photosynthesis in low-light environments. Guided by NMR chemical shifts and distance constraints for Chlorobaculum tepidum wild-type chlorosomes, the two contrasting packing modes for syn-anti parallel stacks of BChl c to form polar 2D arrays, with dipole moments adding up, are explored. Layered assemblies were optimized using local orbital density functional and plane wave pseudopotential methods. The packing mode with the lowest energy contains syn-anti and anti-syn H-bonding between stacks. It can accommodate R and S epimers, and side chain variability. For this packing, a match with the available EM data on the subunit axial repeat and optical data is obtained with multiple concentric cylinders for a rolling vector with the stacks running at an angle of 21° to the cylinder axis and with the BChl dipole moments running at an angle ߠ∼ 55° to the tube axis, in accordance with optical data. A packing mode involving alternating syn and anti parallel stacks that is at variance with EM appears higher in energy. A weak cross-peak at -6 ppm in the MAS NMR with 50 kHz spinning, assigned to C-181, matches the shift of antiparallel dimers, which possibly reflects a minor impurity-type fraction in the self-assembled BChl c.

3.
Chem Rev ; 122(10): 9943-10018, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35536915

RESUMO

Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, 1H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the 1H-1H dipolar couplings, so that a direct detection of 1H signals, for long impossible without proton dilution, has become possible at high resolution. The switch from the traditional MAS NMR approaches with 13C and 15N detection to 1H boosts the signal by more than an order of magnitude, accelerating the site-specific analysis and opening the way to more complex immobilized biological systems of higher molecular weight and available in limited amounts. This paper reviews the concepts underlying this recent leap forward in sensitivity and resolution, presents a detailed description of the experimental aspects of acquisition of multidimensional correlation spectra with fast MAS, and summarizes the most successful strategies for the assignment of the resonances and for the elucidation of protein structure and conformational dynamics. It finally outlines the many examples where 1H-detected MAS NMR has contributed to the detailed characterization of a variety of crystalline and noncrystalline biomolecular targets involved in biological processes ranging from catalysis through drug binding, viral infectivity, amyloid fibril formation, to transport across lipid membranes.


Assuntos
Proteínas , Prótons , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos , Proteínas/química
4.
Methods ; 214: 18-27, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37037308

RESUMO

Small molecules that bind to oligomeric protein species such as membrane proteins and fibrils are of clinical interest for development of therapeutics and diagnostics. Definition of the binding site at atomic resolution via NMR is often challenging due to low binding stoichiometry of the small molecule. For fibrils and aggregation intermediates grown in the presence of lipids, we report atomic-resolution contacts to the small molecule at sub nm distance via solid-state NMR using dynamic nuclear polarization (DNP) and orthogonally labelled samples of the protein and the small molecule. We apply this approach to α-synuclein (αS) aggregates in complex with the small molecule anle138b, which is a clinical drug candidate for disease modifying therapy. The small central pyrazole moiety of anle138b is detected in close proximity to the protein backbone and differences in the contacts between fibrils and early intermediates are observed. For intermediate species, the 100 K condition for DNP helps to preserve the aggregation state, while for both fibrils and oligomers, the DNP enhancement is essential to obtain sufficient sensitivity.


Assuntos
Pirazóis , alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Pirazóis/química , Benzodioxóis/química , Espectroscopia de Ressonância Magnética , Agregados Proteicos
5.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443172

RESUMO

Neurodegenerative disorders are frequently associated with ß-sheet-rich amyloid deposits. Amyloid-forming proteins can aggregate under different structural conformations known as strains, which can exhibit a prion-like behavior and distinct pathophenotypes. Precise molecular determinants defining strain specificity and cross-strain interactions (cross-seeding) are currently unknown. The HET-s prion protein from the fungus Podospora anserina represents a model system to study the fundamental properties of prion amyloids. Here, we report the amyloid prion structure of HELLF, a distant homolog of the model prion HET-s. We find that these two amyloids, sharing only 17% sequence identity, have nearly identical ß-solenoid folds but lack cross-seeding ability in vivo, indicating that prion specificity can differ in extremely similar amyloid folds. We engineer the HELLF sequence to explore the limits of the sequence-to-fold conservation and to pinpoint determinants of cross-seeding and prion specificity. We find that amyloid fold conservation occurs even at an exceedingly low level of identity to HET-s (5%). Next, we derive a HELLF-based sequence, termed HEC, able to breach the cross-seeding barrier in vivo between HELLF and HET-s, unveiling determinants controlling cross-seeding at residue level. These findings show that virtually identical amyloid backbone structures might not be sufficient for cross-seeding and that critical side-chain positions could determine the seeding specificity of an amyloid fold. Our work redefines the conceptual boundaries of prion strain and sheds light on key molecular features concerning an important class of pathogenic agents.


Assuntos
Amiloide/química , Amiloide/metabolismo , Príons/metabolismo , Sequência de Aminoácidos/genética , Amiloide/ultraestrutura , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Sequência Conservada/genética , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Podospora/genética , Agregados Proteicos/fisiologia , Dobramento de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
6.
Proc Natl Acad Sci U S A ; 117(35): 21014-21021, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817429

RESUMO

The protein AlkL is known to increase permeability of the outer membrane of bacteria for hydrophobic molecules, yet the mechanism of transport has not been determined. Differing crystal and NMR structures of homologous proteins resulted in a controversy regarding the degree of structure and the role of long extracellular loops. Here we solve this controversy by determining the de novo NMR structure in near-native lipid bilayers, and by accessing structural dynamics relevant to hydrophobic substrate permeation through molecular-dynamics simulations and by characteristic NMR relaxation parameters. Dynamic lateral exit sites large enough to accommodate substrates such as carvone or octane occur through restructuring of a barrel extension formed by the extracellular loops.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Permeabilidade , Estrutura Secundária de Proteína
7.
J Am Chem Soc ; 144(7): 2953-2967, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35164499

RESUMO

The voltage-dependent anion channel (VDAC), the most abundant protein in the outer mitochondrial membrane, is responsible for the transport of all ions and metabolites into and out of mitochondria. Larger than any of the ß-barrel structures determined to date by magic-angle spinning (MAS) NMR, but smaller than the size limit of cryo-electron microscopy (cryo-EM), VDAC1's 31 kDa size has long been a bottleneck in determining its structure in a near-native lipid bilayer environment. Using a single two-dimensional (2D) crystalline sample of human VDAC1 in lipids, we applied proton-detected fast magic-angle spinning NMR spectroscopy to determine the arrangement of ß strands. Combining these data with long-range restraints from a spin-labeled sample, chemical shift-based secondary structure prediction, and previous MAS NMR and atomic force microscopy (AFM) data, we determined the channel's structure at a 2.2 Å root-mean-square deviation (RMSD). The structure, a 19-stranded ß-barrel, with an N-terminal α-helix in the pore is in agreement with previous data in detergent, which was questioned due to the potential for the detergent to perturb the protein's functional structure. Using a quintuple mutant implementing the channel's closed state, we found that dynamics are a key element in the protein's gating behavior, as channel closure leads to the destabilization of not only the C-terminal barrel residues but also the α2 helix. We showed that cholesterol, previously shown to reduce the frequency of channel closure, stabilizes the barrel relative to the N-terminal helix. Furthermore, we observed channel closure through steric blockage by a drug shown to selectively bind to the channel, the Bcl2-antisense oligonucleotide G3139.


Assuntos
Bicamadas Lipídicas/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Sítios de Ligação , Colesterol/química , Colesterol/metabolismo , Humanos , Ativação do Canal Iônico , Ligantes , Mutação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Tionucleotídeos/química , Tionucleotídeos/metabolismo , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 1 Dependente de Voltagem/genética
8.
J Am Chem Soc ; 144(9): 4147-4157, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35200002

RESUMO

The flow of ions across cell membranes facilitated by ion channels is an important function for all living cells. Despite the huge amount of structural data provided by crystallography, elucidating the exact interactions between the selectivity filter atoms and bound ions is challenging. Here, we detect bound 15N-labeled ammonium ions as a mimic for potassium ions in ion channels using solid-state NMR under near-native conditions. The non-selective ion channel NaK showed two ammonium peaks corresponding to its two ion binding sites, while its potassium-selective mutant NaK2K that has a signature potassium-selective selectivity filter with four ion binding sites gave rise to four ammonium peaks. Ions bound in specific ion binding sites were identified based on magnetization transfer between the ions and carbon atoms in the selectivity filters. Magnetization transfer between bound ions and water molecules revealed that only one out of four ions in the selectivity filter of NaK2K is in close contact with water, which is in agreement with the direct knock-on ion conduction mechanism where ions are conducted through the channel by means of direct interactions without water molecules in between. Interestingly, the potassium-selective ion channels investigated here (NaK2K and, additionally, KcsA-Kv1.3) showed remarkably different chemical shifts for their bound ions, despite having identical amino acid sequences and crystal structures of their selectivity filters. Molecular dynamics simulations show similar ion binding and conduction behavior between ammonium and potassium ions and identify the origin of the differences between the investigated potassium channels.


Assuntos
Compostos de Amônio , Canais de Potássio , Compostos de Amônio/metabolismo , Proteínas de Bactérias/química , Íons/metabolismo , Simulação de Dinâmica Molecular , Potássio/metabolismo , Canais de Potássio/química , Conformação Proteica , Água/metabolismo
9.
Eur Biophys J ; 50(2): 173-180, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33354729

RESUMO

Translocator Protein (18 kDa) (TSPO) is a mitochondrial transmembrane protein commonly used as a biomarker for neuroinflammation and is also a potential therapeutic target in neurodegenerative diseases. Despite intensive research efforts, the function of TSPO is still largely enigmatic. Deciphering TSPO structure in the native lipid environment is essential to gain insight into its cellular activities and to design improved diagnostic and therapeutic ligands. Here, we discuss the influence of lipid composition on the structure of mammalian TSPO embedded into lipid bilayers on the basis of solid-state NMR experiments. We further highlight that cholesterol can influence both the tertiary and quaternary TSPO structure and also influence TSPO localization in mitochondria-associated endoplasmic reticulum membranes.


Assuntos
Membrana Celular/metabolismo , Espectroscopia de Ressonância Magnética , Receptores de GABA/química , Receptores de GABA/metabolismo
10.
Eur Biophys J ; 50(2): 159-172, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33782728

RESUMO

The voltage-dependent anion channel (VDAC) is one of the most highly abundant proteins found in the outer mitochondrial membrane, and was one of the earliest discovered. Here we review progress in understanding VDAC function with a focus on its structure, discussing various models proposed for voltage gating as well as potential drug targets to modulate the channel's function. In addition, we explore the sensitivity of VDAC structure to variations in the membrane environment, comparing DMPC-only, DMPC with cholesterol, and near-native lipid compositions, and use magic-angle spinning NMR spectroscopy to locate cholesterol on the outside of the ß-barrel. We find that the VDAC protein structure remains unchanged in different membrane compositions, including conditions with cholesterol.


Assuntos
Ativação do Canal Iônico , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/metabolismo , Simulação de Dinâmica Molecular
11.
J Phys Chem A ; 125(3): 754-769, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33464081

RESUMO

Internuclear distance determination is the foundation for NMR-based structure calculation. However, high-precision distance measurement is a laborious process requiring lengthy data acquisitions due to the large set of multidimensional spectra needed at different mixing times. This prevents application to large or challenging molecular systems. Here, we present a new approach, transferred-rotational-echo double resonance (TREDOR), a heteronuclear transfer method in which we simultaneously detect both starting and transferred signals in a single spectrum. This co-acquisition is used to compensate for coherence decay, resulting in accurate and precise distance determination by a single parameter fit using a single spectrum recorded at an ideal mixing time. We showcase TREDOR with the microcrystalline SH3 protein using 3D spectra to resolve resonances. By combining the measured N-C and H-C distances, we calculate the structure of SH3, which converges to the correct fold, with a root-mean-square deviation of 2.1 Å compared to a reference X-ray structure. The TREDOR data used in the structure calculation were acquired in only 4 days on a 600 MHz instrument. This is achieved due to the more than 2-fold time saving afforded by co-acquisition of additional information and demonstrates TREDOR as a fast and straightforward method for determining structures via magic-angle spinning NMR.

12.
Angew Chem Int Ed Engl ; 60(38): 20984-20990, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34289241

RESUMO

Nuclear magnetic resonance is usually drastically limited by its intrinsically low sensitivity: Only a few spins contribute to the overall signal. To overcome this limitation, hyperpolarization methods were developed that increase signals several times beyond the normal/thermally polarized signals. The ideal case would be a universal approach that can signal enhance the complete sample of interest in solution to increase detection sensitivity. Here, we introduce a combination of para-hydrogen enhanced magnetic resonance with the phenomenon of the RASER: Large signals of para-hydrogen enhanced molecules interact with the magnetic resonance coil in a way that the signal is spontaneously converted into an in-phase signal. These molecules directly interact with other compounds via dipolar couplings and enhance their signal. We demonstrate that this is not only possible for solvent molecules but also for an amino acid.

13.
Angew Chem Int Ed Engl ; 60(45): 24075-24079, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34477305

RESUMO

Atomic details of structured water molecules are indispensable to understand the thermodynamics of important biological processes including the proton conduction mechanism of the M2 protein. Despite the expectation of structured water molecules based on crystal structures of Influenza A M2, only two water populations have been observed by NMR in reconstituted lipid bilayer samples. These are the bulk- and lipid-associated water populations typically seen in membrane samples. Here, we detect a bound water molecule at a chemical shift of 11 ppm, located near the functional histidine 37 residue in the M2 conductance domain, which comprises residues 18 to 60. Combining 100 kHz magic-angle spinning NMR, dynamic nuclear polarization and density functional theory calculations, we show that the bound water forms a hydrogen bond to the δ1 nitrogen of histidine 37.


Assuntos
Histidina/química , Vírus da Influenza A/química , Água/química , Teoria da Densidade Funcional , Ressonância Magnética Nuclear Biomolecular
14.
Angew Chem Int Ed Engl ; 60(17): 9712-9718, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33501758

RESUMO

We present the first example of macroscalar helices co-assembled from temperature-responsive carbohydrate-based bolaamphiphiles (CHO-Bolas) and 1,4-benzenediboronic acid (BDBA). The CHO-Bolas contained hydrophilic glucose or mannose moieties and a hydrophobic coumarin dimer. They showed temperature-responsive reversible micelle-to-vesicle transition (MVT) in aqueous solutions. After the binding of carbohydrate moieties with boronic acids of BDBA in their alkaline solutions, right-handed helices were formed via the temperature-driven chirality transfer of d-glucose or d-mannose from the molecular to supramolecular level. These helices were co-assembled by unreacted BDBA, boronate esters (B-O-C bonds) between CHO-Bolas and BDBA, as well as boroxine anhydrides (B-O-B bonds) of self-condensed BDBA. After heating at 300 °C under nitrogen, the helices displayed excellent morphological stability. Moreover, they emitted bright blue luminescence caused by strong self-condensation of BDBA and decomposition of coumarin dimers.

15.
J Am Chem Soc ; 142(12): 5793-5799, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32129995

RESUMO

Thanks to magic-angle spinning (MAS) probes with frequencies of 60-100 kHz, the benefit of high-sensitivity 1H detection can now be broadly realized in biomolecular solid-state NMR for the analysis of microcrystalline, sedimented, or lipid-embedded preparations. Nonetheless, performing the assignment of all resonances remains a rate-limiting step in protein structural studies, and even the latest optimized protocols fail to perform this step when the protein size exceeds ∼20 kDa. Here, we leverage the benefits of fast (100 kHz) MAS and high (800 MHz) magnetic fields to design an approach that lifts this limitation. Through the creation, conservation, and acquisition of independent magnetization pathways within a single triple-resonance MAS NMR experiment, a single self-consistent data set can be acquired, providing enhanced sensitivity, reduced vulnerability to machine or sample instabilities, and highly redundant linking that supports fully automated peak picking and resonance assignment. The method, dubbed RAVASSA (redundant assignment via a single simultaneous acquisition), is demonstrated with the assignment of the largest protein to date in the solid state, the 42.5 kDa maltose binding protein, using a single fully protonated microcrystalline sample and 1 week of spectrometer time.


Assuntos
Proteínas de Escherichia coli/análise , Proteínas Ligantes de Maltose/análise , Escherichia coli/química , Ressonância Magnética Nuclear Biomolecular/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos
16.
J Am Chem Soc ; 142(6): 2704-2708, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31970979

RESUMO

The arrangement of histidine side chains in influenza A M2 tetramer determines their pKa values, which define pH-controlled proton conduction critical to the virus lifecycle. Both water-associated and hydrogen-bonded imidazole-imidazolium histidine quaternary structures have been proposed, based on crystal structures and NMR chemical shifts, respectively. Here we show, using the conduction domain construct of M2 in lipid bilayers, that the imidazole rings are hydrogen bonded even at a pH of 7.8 in the neutral charge state. An intermolecular 8.9 ± 0.3 Hz 2hJNN hydrogen bond is observed between H37 Nε and Nδ recorded in a fully protonated sample with 100 kHz magic-angle spinning. This interaction could not be detected in the drug-bound sample.


Assuntos
Histidina/química , Concentração de Íons de Hidrogênio , Imidazóis/química , Proteínas da Matriz Viral/química , Ligação de Hidrogênio
17.
Chemistry ; 26(66): 15290-15297, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32770682

RESUMO

We disclose the unprecedented hybrid-ruthenium catalysis for distal meta-C-H activation. The hybrid-ruthenium catalyst was recyclable, as was proven by various heterogeneity tests, and fully characterized with various microscopic and spectroscopic techniques, highlighting the physical and chemical stability. Thereby, the hybrid-ruthenium catalysis proved broadly applicable for meta-C-H alkylations of among others purine-based nucleosides and natural product conjugates. Additionally, its versatility was further reflected by meta-C-H activations through visible-light irradiation, as well as para-selective C-H activations.

18.
Chemphyschem ; 21(15): 1622-1626, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32558171

RESUMO

The NMR pulse sequence CODEX (centerband-only detection of exchange) is a widely used method to report on the number of magnetically inequivalent spins that exchange magnetization via spin diffusion. For crystals, this rules out certain symmetries, and the rate of equilibration is sensitive to distances. Here we show that for 13 C CODEX, consideration of natural abundance spins is necessary for crystals of high complexity, demonstrated here with the amino acid phenylalanine. The NMR data rule out the C2 space group that was originally reported for phenylalanine, and are only consistent with a larger unit cell containing eight magnetically inequivalent molecules. Such an expanded cell was recently described based on single crystal data. The large unit cell dictates the use of long spin diffusion times of more than 200 seconds, in order to equilibrate over the entire unit cell volume of 1622 Å3 .

19.
Proc Natl Acad Sci U S A ; 114(14): 3642-3647, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28330994

RESUMO

The yeast prion protein Sup35NM is a self-propagating amyloid. Despite intense study, there is no consensus on the organization of monomers within Sup35NM fibrils. Some studies point to a ß-helical arrangement, whereas others suggest a parallel in-register organization. Intermolecular contacts are often determined by experiments that probe long-range heteronuclear contacts for fibrils templated from a 1:1 mixture of 13C- and 15N-labeled monomers. However, for Sup35NM, like many large proteins, chemical shift degeneracy limits the usefulness of this approach. Segmental and specific isotopic labeling reduce degeneracy, but experiments to measure long-range interactions are often too insensitive. To limit degeneracy and increase experimental sensitivity, we combined specific and segmental isotopic labeling schemes with dynamic nuclear polarization (DNP) NMR. Using this combination, we examined an amyloid form of Sup35NM that does not have a parallel in-register structure. The combination of a small number of specific labels with DNP NMR enables determination of architectural information about polymeric protein systems.


Assuntos
Fatores de Terminação de Peptídeos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Marcação por Isótopo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/química
20.
Angew Chem Int Ed Engl ; 59(8): 3218-3225, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31692150

RESUMO

Reported here for the first time is the alkaline periodate oxidation of lignocelluloses for the selective isolation of cellulose nanocrystals (CNCs). With the high concentrations as a potassium salt at pH 10, periodate ions predominantly exist as dimeric orthoperiodate ions (H2 I2 O104- ). With reduced oxidizing activity in alkaline solutions, dimeric orthoperiodate ions preferentially oxidized non-ordered cellulose regions. The alkaline surroundings promoted the degradation of these oxidized cellulose chains by ß-alkoxy fragmentation and generated CNCs. The obtained CNCs were uniform in size and generally contained carboxy groups. Furthermore, the reaction solution could be reused after regeneration of the periodate with ozone gas. This method allows direct production of CNCs from diverse sources, in particular lignocellulosic raw materials including sawdust (European beech and Scots pine), flax, and kenaf, in addition to microcrystalline cellulose and pulp.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA