Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Theor Biol ; 398: 74-84, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-26947272

RESUMO

T follicular helper (Tfh) cells are a highly plastic subset of CD4+ T cells specialized in providing B cell help and promoting inflammatory and effector responses during infectious and immune-mediate diseases. Helicobacter pylori is the dominant member of the gastric microbiota and exerts both beneficial and harmful effects on the host. Chronic inflammation in the context of H. pylori has been linked to an upregulation in T helper (Th)1 and Th17 CD4+ T cell phenotypes, controlled in part by the cytokine, interleukin-21. This study investigates the differentiation and regulation of Tfh cells, major producers of IL-21, in the immune response to H. pylori challenge. To better understand the conditions influencing the promotion and inhibition of a chronically elevated Tfh population, we used top-down and bottom-up approaches to develop computational models of Tfh and T follicular regulatory (Tfr) cell differentiation. Stability analysis was used to characterize the presence of two bi-stable steady states in the calibrated Tfh/Tfr models. Stochastic simulation was used to illustrate the ability of the parameter set to dictate two distinct behavioral patterns. Furthermore, sensitivity analysis helped identify the importance of various parameters on the establishment of Tfh and Tfr cell populations. The core network model was expanded into a more comprehensive and predictive model by including cytokine production and signaling pathways. From the expanded network, the interaction between TGFB-Induced Factor Homeobox 1 (Tgif1) and the retinoid X receptor (RXR) was displayed to exert control over the determination of the Tfh response. Model simulations predict that Tgif1 and RXR respectively induce and curtail Tfh responses. This computational hypothesis was validated experimentally by assaying Tgif1, RXR and Tfh in stomachs of mice infected with H. pylori.


Assuntos
Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/fisiologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular , Simulação por Computador , Proteínas de Homeodomínio/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Proteínas Repressoras/metabolismo , Receptores X de Retinoides/metabolismo , Processos Estocásticos
2.
Front Cell Dev Biol ; 2: 31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25364738

RESUMO

The immune system is composed of many different cell types and hundreds of intersecting molecular pathways and signals. This large biological complexity requires coordination between distinct pro-inflammatory and regulatory cell subsets to respond to infection while maintaining tissue homeostasis. CD4+ T cells play a central role in orchestrating immune responses and in maintaining a balance between pro- and anti- inflammatory responses. This tight balance between regulatory and effector reactions depends on the ability of CD4+ T cells to modulate distinct pathways within large molecular networks, since dysregulated CD4+ T cell responses may result in chronic inflammatory and autoimmune diseases. The CD4+ T cell differentiation process comprises an intricate interplay between cytokines, their receptors, adaptor molecules, signaling cascades and transcription factors that help delineate cell fate and function. Computational modeling can help to describe, simulate, analyze, and predict some of the behaviors in this complicated differentiation network. This review provides a comprehensive overview of existing computational immunology methods as well as novel strategies used to model immune responses with a particular focus on CD4+ T cell differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA