Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885747

RESUMO

There is experimental evidence of high vibronic activity that accompanies the allowed transition between the ground state and the lowest electronic singlet excited state of oligofurans that contain two, three, and four furan rings. The absorption and emission spectra of the three lowest oligofurans measured at liquid nitrogen temperature show distinct fine structures that are reproduced using the projection-based model of vibronic coupling (with Dushinsky rotation included) parameterized utilizing either Density Functional Theory (DFT, with several different exchange-correlation functionals) or ab initio (CC2) quantum chemistry calculations. Using as a reference the experimental data concerning the electronic absorption and fluorescence for the eight lowest oligofurans, we first analyzed the performance of the exchange-correlation functionals for the electronic transition energies and the reorganization energies. Subsequently, we used the best functionals alongside with the CC2 method to explore how the reorganization energies are distributed among the totally symmetric vibrations, identify the normal modes that dominate in the fine structures present in the absorption and emission bands, and trace their evolution with the increasing number of rings in the oligofuran series. Confrontation of the simulated spectra with the experiment allows for the verification of the performance of the selected DFT functionals and the CC2 method.

2.
Phys Chem Chem Phys ; 20(20): 14061-14071, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29745952

RESUMO

With the perspective of future vibronic studies, ab initio calculations of the energies of vibrational relaxation that follows the processes of singlet or triplet excitation, and positive or negative ionization, are reported for four series of compounds of potential interest in the context of photovoltaic applications, notably those rooted in singlet exciton fission. The commonly used method of evaluating the energy of vibrational relaxation following ionization of an excited molecule is examined and found to be dubious, especially when used within approaches based on the concept of an effective progression-forming mode. In this regard, methodological consistency in computing the relaxation energies and Franck-Condon parameters for different excitation processes is found to be of paramount importance. The presented results respond to the existing demand for vibronic coupling constants relevant to singlet fission.

3.
Phys Chem Chem Phys ; 20(19): 13430-13436, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29722388

RESUMO

In this work we extend the concept of migrating Clar's sextets to explain local aromaticity trends in linear acenes predicted by theoretical calculations and experimental data. To assess the link between resonance and reactivity and to rationalize the constant-height AFM image of pentacene we used the electron density of delocalized bonds and other functions of the one-electron density from conceptual density functional theory. The presented results provide evidence for migration of Clar's π-sextets and larger circuits in these systems, and clearly show that the link between the theoretical concept of aromaticity and the real electronic structure entails the separation of intra- and inter-ring resonance effects, which in the case of [n]acenes (n = 3, 4, 5) comes down to solving a system of simple linear equations.

4.
J Phys Chem A ; 122(30): 6243-6255, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-29965767

RESUMO

The S0 → S1(π → π*) excitation in o-aminobenzoic acid causes strengthening of the N-H···O intramolecular hydrogen bond. The interplay of the hydrogen bond shortening, the hydrogen atom dislocation along the hydrogen bond, and the skeletal relaxation is investigated. These effects often cause the appearance of dual fluorescence from the π-conjugated internally H-bonded molecules, which is traditionally interpreted as the evidence of the excited-state intramolecular proton transfer process: ESPIT. Hence, their quantitative modeling is an important but demanding task for computational photochemistry. Extensive calculations using CC2 method (the perturbative approximation to CCSD coupled-cluster) and TDDFT(B3LYP) were performed with the series of (aug)-cc-pVXZ(X = D,T,Q) basis sets. CC2 predicts remarkable shortening of the O···H distance by 0.273 Å accompanied by the skeleton relaxation that involves considerable distortions of valence angles of the amino group (up to 7.3°) and within the benzene ring (up to 5°). Additionally, moderate changes (<0.046 Å) of the bond alternation in the π-electronic system and the hydrogen atom dislocation along the hydrogen bond (0.043 Å) are predicted. The CC2 method yields 90% of the magnitude of the experimentally based geometry changes, estimated in the earlier studies via Franck-Condon fit to the LIF spectra, while the TDDFT results approach only 65% of the experimental values.

5.
J Comput Chem ; 38(18): 1640-1654, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28436535

RESUMO

In this article, we address the role of the long-range exchange corrections in description of the cyclic delocalization of electrons in aromatic systems at the density functional theory level. A test set of diversified monocyclic and polycyclic aromatics is used in benchmark calculations involving various exchange-correlation functionals. A special emphasis is given to the problem of local aromaticity in acenes, which has been a subject of long-standing debate in the literature. The presented results indicate that the noncorrected exchange-correlation functionals significantly overestimate cyclic delocalization of electrons in heteroaromatics and aromatic systems with fused rings, which in the case of acenes leads to conflicting local aromaticity predictions from different criteria. © 2017 Wiley Periodicals, Inc.

6.
Phys Chem Chem Phys ; 19(42): 28970-28981, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29063082

RESUMO

In this study the recently developed electron density of delocalized bonds (EDDB) is used to define a new measure of aromaticity in molecular rings. The relationships between bond-length alternation, electron delocalization and diatropicity of the induced ring current are investigated for a test set of representative molecular rings by means of correlation and principal component analyses involving the most popular aromaticity descriptors based on structural, electronic, and magnetic criteria. Additionally, a qualitative comparison is made between EDDB and the magnetically induced ring-current density maps from the ipsocentric approach for a series of linear acenes. Special emphasis is given to the comparative study of the description of cyclic delocalization of electrons in a wide range of organic aromatics in terms of the kekulean multicenter index KMCI and the newly proposed EDDBk index.

7.
Chemistry ; 21(43): 15299-307, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26336944

RESUMO

In the present study, the inorganic analogues of alkanes as well as their isoelectronic BN/CC counterparts that bridge the gap between organic and inorganic chemistry are comparatively studied on the grounds of static DFT and Car-Parrinello molecular dynamics simulations. The BN/CC butanes CH3 CH2 BH2 NH3 , BH3 CH2 NH2 CH3 , and NH3 CH2 BH2 CH3 were considered and compared with their isoelectronic counterparts NH3 BH2 NH2 BH3 and CH3 CH2 CH2 CH3 . In addition, systematical replacement of the NH2 BH2 fragment by the isoelectronic CH2 CH2 moiety is studied in the molecules H3 N(NH2 BH2 )3-m (CH2 CH2 )m BH3 (for m=0, 1, 2, or 3) and H3 N(NH2 BH2 )2-m (CH2 CH2 )m BH3 (for m=0, 1, or 2). The DFT and Car-Parrinello simulations show that the isosteres of the BN/CC butanes CH3 CH2 BH2 NH3 , BH3 CH2 NH2 CH3 , and NH3 CH2 BH2 CH3 and of larger oligomers of the type (BN)k (CC)l where k≥l are stable compounds. The BN/CC butane H3 NCH2 CH2 BH3 spontaneously produces molecular hydrogen at room temperature. The reaction, prompted by very strong dihydrogen bonding NH⋅⋅⋅HB, undergoes through the neutral, hypervalent, pentacoordinated boron dihydrogen complex RBH2 (H2 ) [R=(CH2 CH2 )n NH2 ]. The calculations suggest that such intermediate and the other BN/CC butanes CH3 CH2 BH2 NH3 , BH3 CH2 NH2 CH3 , and NH3 CH2 BH2 CH3 as well as larger BN/CC oligomers are viable experimentally. A simple recipe for the synthesis of CH3 CH2 BH2 NH3 is proposed. The strength of the dihydrogen bonding appeared to be crucial for the overall stability of the saturated BN/CC derivatives.

8.
Phys Chem Chem Phys ; 17(7): 5328-37, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25609244

RESUMO

Theoretical methods that were previously used to give a good quantitative description of the 3(1)Bu state of trans-2,2'-bithiophene are applied to characterize the lowest triplet states of three bridged cis-2,2'-bithiophenes: 3,3'-cyclopentadithiophene (CPDT), 3,3'-dithienylpyrrole (DTP), and 3,3'-dithienylthiophene (DTT). By obtaining highly accurate reproductions of the phosphorescence spectra of all three compounds, we rationalize the observed vibronic activity, further explore the performance of the applied theoretical methods, and address the quality of the reported experimental spectra. Over the course of this study we have, first, characterized the changes in the electronic structures between the ground state and the lowest triplet state and, second, expressed the related geometrical differences in terms of the Huang-Rhys factors. The Huang-Rhys factors have then been used to generate theoretical emission spectra with vibronic resolution. The applied procedure has yielded quantitative reproductions of the previously reported experimental phosphorescence spectra of DTT and DTP. The experimental spectrum of CPDT, on the other hand, turned out to be considerably narrower and intensity-deficient in its low energy region when compared with the theoretical results. Our experimental reinvestigation of the CPDT phosphorescence has given a refined spectrum that is significantly wider than the previously reported one, and is in nearly quantitative agreement with the theoretical prediction. This enabled us to attribute the observed discrepancy to an experimental artifact associated with the sensitivity characteristics of the commonly used photomultipliers.

9.
Phys Chem Chem Phys ; 16(12): 5605-12, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24514434

RESUMO

Theoretical investigation into vibronic activity observed in the phosphorescence spectrum of 2,2'-bithiophene (2T) has revealed unexpectedly large discrepancies between the theoretical predictions and the available experimental spectrum. Theoretical spectra, obtained using the results of the high-level quantum chemistry calculations and the well founded model for vibronic activity, are considerably wider than the experimental one. The energy of the onset (corresponding to the adiabatic transition energy) is quantitatively reproduced, but the centers of gravity of the simulated spectral bands (vertical emission energies) are considerably red-shifted with respect to experiment. Critical reconsideration and tests of the approximations underlying the theoretical approach have failed to pinpoint the source of the observed discrepancies. In the following experimental reinvestigation of the phosphorescence of 2T we have observed that unusually large concentration of the chromophore and careful recalibration of the detector prior to measurements have been essential to collect a good quality spectrum. Incidentally, being considerably different from the previously reported one, the newly reported phosphorescence spectrum of 2T is in nearly quantitative agreement with the theoretical predictions.

10.
Phys Chem Chem Phys ; 16(38): 20514-23, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25141995

RESUMO

A novel method for investigating the multicenter bonding patterns in molecular systems by means of the so-called Electron Density of Delocalized Bonds (EDDB) is introduced and discussed. The EDDB method combines the concept of Jug's bond-order orbitals and the indirect ("through-bridge") interaction formalism and opens up new opportunities for studying the interplay between different atomic interactions as well as their impact on both local and global resonance stabilization in systems of conjugated bonds. Using several illustrative examples we demonstrate that the EDDB approach allows for a reliable quantitative description of diverse multicenter delocalization phenomena (with special regard to evaluation of the aromatic stabilization in molecular systems) within the framework of a consistent theoretical paradigm.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124491, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823243

RESUMO

This study aims to investigate the impact of the π â†’ π* excitation localised in one monomer on the equilibrium geometry and oscillations of the AA dimer. Several low-frequency vibrations appear in pairs in the LIF spectrum because oscillations involving intermolecular hydrogen bonds are coupled, generating approximately symmetric and antisymmetric combinations (especially the COOH rocking modes, LIF: 295 and 301 cm-1). Furthermore, quantitative evaluation based on the TDDFT(B3LYP) results indicates that a dozen among 90 intramolecular oscillations are strongly coupled. In contrast, most vibrations are decoupled or weakly coupled, since they involve remote parts of the monomers. This makes several single vibrations active in the LIF spectrum (including the bending mode of the NH···O intramolecular hydrogen bond associated the strongest vibronic band 442 cm-1), while the other in each pair remains inactive. The reason for decoupling of oscillations and symmetry breaking is that the π â†’ π* electronic excitation is entirely localised within one of the monomers, which makes them no longer equivalent in terms of geometry and dynamics. Additionally, the excitation of one monomer induces strengthening and shortening by 6 pm of only one intermolecular hydrogen bond linking the carboxylic groups of both molecules. This causes the 1.7° in-plane distortion of the dimer and lowering of its symmetry to Cs group (from C2h for the S0 state). The distortion induces the activity of two low-frequency in-plane intermolecular vibrations, i.e. the geared oscillation (LIF: 58 cm-1) and the shearing motion (99 cm-1) of the monomers.

12.
J Phys Chem A ; 117(48): 12770-82, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24219819

RESUMO

The harmonic approximation fails for inversion of the NH2 group in the ground state of aromatic amines as this vibration is characterized by a symmetric double-well potential with relatively small energy barrier. In such cases, the standard harmonic vibrational analysis is inapplicable: the inversion frequency calculated for the bottom of the potential well is strongly overestimated, while it attains imaginary values for the planar conformation of the molecule. The model calculations are discussed taking explicitly into account the presence of the double-well potential. The study is initially focused on reproduction of the deuteration-induced shifts of the 0-0 absorption band for anthranilic acid. The (incorrect) harmonic frequency of the NH2 inversion is replaced by a better one, obtained from numerical calculations employing a simple, quartic-quadratic model for the double-well potential, which is parametrized using just the harmonic frequency of the inversion and the height of the energy barrier. This operation brings theoretical results to qualitative agreement with experiment. A still better match is achieved with a modified version of the model that accounts for mixing of the NH2 inversion mode with other normal modes while retaining the initial simplicity of one-dimensional approach. The corrected results show surprisingly good accuracy, with deviations of the calculated shifts from the experimental values reduced to less than 5 cm(-1). In order to test the performance of the model for systems with higher energy barrier for the NH2 inversion, we have measured the LIF excitation spectra of three different amminobenzonitriles. Partial assignment of the 0-0 bands has been achieved based on their relative intensities for samples with different isotopic exchange ratios. Calculated shifts are in excellent agreement with experimental values for the identified bands. Theoretical predictions are used to complete the assignment of the 0-0 bands in the spectra of the studied amminobenzonitriles.

13.
J Phys Chem A ; 116(40): 10004-14, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22988982

RESUMO

Five analogues of a novel group of boron derivatives of aminophosphonic acids-N-benzylamino-(3-boronphenyl)-S-methylphosphonic acid (m-PhS), N-benzylamino-(4-boronphenyl)-S-methylphosphonic acid (p-PhS), N-benzylamino-(2-boronphenyl)-R-methylphosphonic acid (o-PhR), N-benzylamino-(3-boronphenyl)-R-methylphosphonic acid (m-PhR), and N-benzylamino-(4-boronphenyl)-R-methylphosphonic acid (p-PhR)-were studied using Fourier transform infrared (FT IR), Fourier transform Raman (FT RS), and surface-enhanced Raman (SERS) spectroscopies. Analysis of obtained FT IR and FT RS spectra show that all investigated compounds in the solid state exist as dimeric species formed by an H-bonding interaction between -B(OH)(2) moieties of each monomer. In addition, comparison of the wavenumbers, intensities, and broadness of bands from the FT Raman and SERS spectra allowed information to be obtained regarding the adsorption geometry of the investigated compounds immobilized onto an electrochemically roughened silver substrate.


Assuntos
Compostos de Boro/química , Organofosfonatos/química , Modelos Moleculares , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
14.
J Phys Chem A ; 112(51): 13737-44, 2008 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19053502

RESUMO

A combined DFT/TDDFT approach has been applied for calculating the Huang-Rhys (HR) parameters along the totally symmetric normal coordinates for the 1(1)A(g)(1(1)A(1)) <--1(1)B(u) (1(1)B(2)) electronic transition in a series of oligothiophenes containing from 2 to 6 thiophene rings. The calculations required optimized molecular geometries for both the ground state and the excited molecular state. The excited state geometry optimization was carried out by means of the time-dependent density functional theory (TDDFT) based methodology implemented in the Turbomole 5.9 (1) package of programs. The results for the three smallest oligothiophenes were verified by generating the theoretical vibronic structures and comparing them with the high-resolution fluorescence spectra measured for matrix-isolated molecules. For bithiophene a comparison was also made of the theoretical results obtained for different basis sets and the most popular exchange-correlation functionals. The best results were then confronted with the HR parameters based on the molecular geometries calculated at the CASSCF level of theory. The results obtained within the DFT/TDDFT approach are in very good agreement with the available experimental data for bithiophene, terthiophene, and quaterthiophene molecules.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 61(9): 2029-32, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15911388

RESUMO

The absorption spectra of the N-(2,5-di-tert-butylphenyl) phthalimide (1-), N-(2,5-di-tert-butylphenyl)-1,8-naphthalimide (2-) and N-(2,5-di-tert-butylphenyl)-perylene-3,4-dicarboximide (3-) anion radicals are studied in terms of time dependent density functional theory (TDDFT). For these anion radicals a large number electronic states (from 30 to 60) was found in the visible and near-IR regions (5000-45,000 cm(-1)). In these regions the TD/B3LYP treatment at the 6-1+G* level is shown to reproduce satisfactorily the empirical absorption spectra of all three anion radicals studied. The most apparent discrepancies between purely electronic theory and the experiment could be found in the excitation region corresponding to D0-->D1 transitions in the 2- and 3- molecules. For these species we argue that the structures seen in the lowest energy part of the absorptions of the 2- and 3- species are very likely due to Franck-Condon (FC) activity of the totally symmetric vibrations not studied in this Letter.


Assuntos
Ânions/química , Elétrons , Imidas/química , Radicais Livres/química , Estrutura Molecular , Análise Espectral , Fatores de Tempo , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA