Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2321770121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38950370

RESUMO

Solar particle events (SPEs) are short-lived bursts of high-energy particles from the solar atmosphere and are widely recognized as posing significant economic risks to modern society. Most SPEs are relatively weak and have minor impacts on the Earth's environment, but historic records contain much stronger SPEs which have the potential to alter atmospheric chemistry, impacting climate and biological life. The impacts of such strong SPEs would be far more severe when the Earth's protective geomagnetic field is weak, such as during past geomagnetic excursions or reversals. Here, we model the impacts of an extreme SPE under different geomagnetic field strengths, focusing on changes in atmospheric chemistry and surface radiation using the atmosphere-ocean-chemistry-climate model SOCOL3-MPIOM and the radiation transfer model LibRadtran. Under current geomagnetic conditions, an extreme SPE would increase NOx concentrations in the polar stratosphere and mesosphere, causing reductions in extratropical stratospheric ozone lasting for about a year. In contrast, with no geomagnetic field, there would be a substantial increase in NOx throughout the entire atmosphere, resulting in severe stratospheric ozone depletion for several years. The resulting ground-level ultraviolet (UV) radiation would remain elevated for up to 6 y, leading to increases in UV index up to 20 to 25% and solar-induced DNA damage rates by 40 to 50%. The potential evolutionary impacts of past extreme SPEs remain an important question, while the risks they pose to human health in modern conditions continue to be underestimated.

2.
Environ Sci Technol ; 55(21): 14576-14585, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34662519

RESUMO

Nonvolatile particulate matter (nvPM) emissions from aircraft turbine engines deteriorate air quality and contribute to climate change. These emissions can be reduced using sustainable aviation fuels (SAFs). Here, we investigate the effects of a 32% SAF blend with fossil fuel on particle size distributions and nvPM emission indices of a widely used turbofan engine. The experiments were conducted in a test cell using a standardized sampling and measurement system. The geometric mean diameter (GMD) increased with thrust from ∼8 nm at idle to ∼40 nm at take-off, and the geometric standard deviation (GSD) was in the range of 1.74-2.01. The SAF blend reduced the GMD and GSD at each test point. The nvPM emission indices were reduced most markedly at idle by 70% in terms of nvPM mass and 60% in terms of nvPM number. The relative reduction of nvPM emissions decreased with the increasing thrust. The SAF blend reduced the nvPM emissions from the standardized landing and take-off cycle by 20% in terms of nvPM mass and 25% in terms of nvPM number. This work will help develop standardized models of fuel composition effects on nvPM emissions and evaluate the impacts of SAF on air quality and climate.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aviação , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Material Particulado/análise , Emissões de Veículos/análise
3.
Environ Sci Technol ; 53(21): 12865-12872, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31578862

RESUMO

Business aviation is a relatively small but steadily growing and little investigated emission source. Regarding emissions, aircraft turbine engines rated at and below 26.7 kN thrust are certified only for visible smoke and are excluded from the nonvolatile particulate matter (nvPM) standard. Here, we report nvPM emission characteristics of a widely used small turbofan engine determined in a ground test of a Dassault Falcon 900EX business jet. These are the first reported nvPM emissions of a small in-production turbofan engine determined with a standardized measurement system used for emissions certification of large turbofan engines. The ground-level measurements together with a detailed engine performance model were used to predict emissions at cruising altitudes. The measured nvPM emission characteristics strongly depended on engine thrust. The geometric mean diameter increased from 17 nm at idle to 45 nm at take-off. The nvPM emission indices peaked at low thrust levels (7 and 40% take-off thrust in terms of nvPM number and mass, respectively). A comparison with a commercial airliner shows that a business jet may produce higher nvPM emissions from flight missions as well as from landing and take-off operations. This study will aid the development of emission inventories for small aircraft turbine engines and future emission standards.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aeronaves , Altitude , Emissões de Veículos
4.
Int J Public Health ; 68: 1605879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457845

RESUMO

Objective: To assess the spatiotemporal heterogeneity of lung-deposited particle surface area concentration (LDSA), while testing the long-term performance of a prototype of low-cost-low-maintenance LDSA sensors. One factor hampering epidemiological studies on fine to ultrafine particles (F-to-UFP) exposure is exposure error due to their high spatiotemporal heterogeneity, not reflected in particle mass. Though LDSA shows consistent associations between F-to-UFP exposure and health effects, LDSA data are limited. Methods: We measured LDSA in a network of ten sensors, including urban, suburban, and rural environments in Zurich, Switzerland. With traffic counts, traffic co-pollutant concentrations, and meteorological parameters, we assessed the drivers of the LDSA observations. Results: LDSA reflected the high spatiotemporal heterogeneity of F-to-UFP. With micrometeorological influences, local sources like road traffic, restaurants, air traffic, and residential combustion drove LDSA. The temporal pattern of LDSA reflected that of the local sources. Conclusion: LDSA may be a viable metric for inexpensively characterizing F-to-UFP exposure. The tested devices generated sound data and may significantly contribute to filling the LDSA exposure data gap, providing grounds for more statistically significant epidemiological studies and regulation of F-to-UFP.


Assuntos
Poluentes Atmosféricos , Humanos , Poluentes Atmosféricos/análise , Suíça , Material Particulado/análise , Pulmão/química , Meio Ambiente , Monitoramento Ambiental
5.
Science ; 374(6570): eabi9756, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34793203

RESUMO

Our study on the exact timing and the potential climatic, environmental, and evolutionary consequences of the Laschamps Geomagnetic Excursion has generated the hypothesis that geomagnetism represents an unrecognized driver in environmental and evolutionary change. It is important for this hypothesis to be tested with new data, and encouragingly, none of the studies presented by Picin et al. undermine our model.

6.
Science ; 374(6570): eabh3655, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34793228

RESUMO

Our paper about the impacts of the Laschamps Geomagnetic Excursion 42,000 years ago has provoked considerable scientific and public interest, particularly in the so-called Adams Event associated with the initial transition of the magnetic poles. Although we welcome the opportunity to discuss our new ideas, Hawks' assertions of misrepresentation are especially disappointing given his limited examination of the material.

7.
Science ; 371(6531): 811-818, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33602851

RESUMO

Geological archives record multiple reversals of Earth's magnetic poles, but the global impacts of these events, if any, remain unclear. Uncertain radiocarbon calibration has limited investigation of the potential effects of the last major magnetic inversion, known as the Laschamps Excursion [41 to 42 thousand years ago (ka)]. We use ancient New Zealand kauri trees (Agathis australis) to develop a detailed record of atmospheric radiocarbon levels across the Laschamps Excursion. We precisely characterize the geomagnetic reversal and perform global chemistry-climate modeling and detailed radiocarbon dating of paleoenvironmental records to investigate impacts. We find that geomagnetic field minima ~42 ka, in combination with Grand Solar Minima, caused substantial changes in atmospheric ozone concentration and circulation, driving synchronous global climate shifts that caused major environmental changes, extinction events, and transformations in the archaeological record.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA