RESUMO
There is considerable heterogeneity in immunological parameters between individuals, but its sources are largely unknown. To assess the relative contribution of heritable versus non-heritable factors, we have performed a systems-level analysis of 210 healthy twins between 8 and 82 years of age. We measured 204 different parameters, including cell population frequencies, cytokine responses, and serum proteins, and found that 77% of these are dominated (>50% of variance) and 58% almost completely determined (>80% of variance) by non-heritable influences. In addition, some of these parameters become more variable with age, suggesting the cumulative influence of environmental exposure. Similarly, the serological responses to seasonal influenza vaccination are also determined largely by non-heritable factors, likely due to repeated exposure to different strains. Lastly, in MZ twins discordant for cytomegalovirus infection, more than half of all parameters are affected. These results highlight the largely reactive and adaptive nature of the immune system in healthy individuals.
Assuntos
Imunidade , Gêmeos Dizigóticos , Gêmeos Monozigóticos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/imunologia , Criança , Citocinas/imunologia , Infecções por Citomegalovirus/imunologia , Humanos , Vacinas contra Influenza/imunologia , Pessoa de Meia-Idade , Adulto JovemRESUMO
The elderly have reduced humoral immunity, as manifested by increased susceptibility to infections and impaired vaccine responses. To investigate the effects of aging on B-cell receptor (BCR) repertoire evolution during an immunological challenge, we used a phylogenetic distance metric to analyze Ig heavy-chain transcript sequences in both young and elderly individuals before and after influenza vaccination. We determined that BCR repertoires become increasingly specialized over a span of decades, but less plastic. In 50% of the elderly individuals, a large space in the repertoire was occupied by a small number of recall lineages that did not decline during vaccine response and contained hypermutated IgD+ B cells. Relative to their younger counterparts, older subjects demonstrated a contracted naive repertoire and diminished intralineage diversification, signifying a reduced substrate for mounting novel responses and decreased fine-tuning of BCR specificities by somatic hypermutation. Furthermore, a larger proportion of the repertoire exhibited premature stop codons in some elderly subjects, indicating that aging may negatively affect the ability of B cells to discriminate between functional and nonfunctional receptors. Finally, we observed a decreased incidence of radical mutations compared with conservative mutations in elderly subjects' vaccine responses, which suggests that accumulating original antigenic sin may be limiting the accessible space for paratope evolution. Our findings shed light on the complex interplay of environmental and gerontological factors affecting immune senescence, and provide direct molecular characterization of the effects of senescence on the immune repertoire.