Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nature ; 626(7997): 111-118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297171

RESUMO

The recovery of top predators is thought to have cascading effects on vegetated ecosystems and their geomorphology1,2, but the evidence for this remains correlational and intensely debated3,4. Here we combine observational and experimental data to reveal that recolonization of sea otters in a US estuary generates a trophic cascade that facilitates coastal wetland plant biomass and suppresses the erosion of marsh edges-a process that otherwise leads to the severe loss of habitats and ecosystem services5,6. Monitoring of the Elkhorn Slough estuary over several decades suggested top-down control in the system, because the erosion of salt marsh edges has generally slowed with increasing sea otter abundance, despite the consistently increasing physical stress in the system (that is, nutrient loading, sea-level rise and tidal scour7-9). Predator-exclusion experiments in five marsh creeks revealed that sea otters suppress the abundance of burrowing crabs, a top-down effect that cascades to both increase marsh edge strength and reduce marsh erosion. Multi-creek surveys comparing marsh creeks pre- and post-sea otter colonization confirmed the presence of an interaction between the keystone sea otter, burrowing crabs and marsh creeks, demonstrating the spatial generality of predator control of ecosystem edge processes: densities of burrowing crabs and edge erosion have declined markedly in creeks that have high levels of sea otter recolonization. These results show that trophic downgrading could be a strong but underappreciated contributor to the loss of coastal wetlands, and suggest that restoring top predators can help to re-establish geomorphic stability.


Assuntos
Braquiúros , Estuários , Lontras , Comportamento Predatório , Erosão do Solo , Áreas Alagadas , Animais , Biomassa , Braquiúros/fisiologia , Lontras/fisiologia , Estados Unidos , Plantas , Elevação do Nível do Mar , Ondas de Maré , Nutrientes/metabolismo , Cadeia Alimentar
2.
Proc Natl Acad Sci U S A ; 117(30): 17891-17902, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661151

RESUMO

Keystone species have large ecological effects relative to their abundance and have been identified in many ecosystems. However, global change is pervasively altering environmental conditions, potentially elevating new species to keystone roles. Here, we reveal that a historically innocuous grazer-the marsh crab Sesarma reticulatum-is rapidly reshaping the geomorphic evolution and ecological organization of southeastern US salt marshes now burdened by rising sea levels. Our analyses indicate that sea-level rise in recent decades has widely outpaced marsh vertical accretion, increasing tidal submergence of marsh surfaces, particularly where creeks exhibit morphologies that are unable to efficiently drain adjacent marsh platforms. In these increasingly submerged areas, cordgrass decreases belowground root:rhizome ratios, causing substrate hardness to decrease to within the optimal range for Sesarma burrowing. Together, these bio-physical changes provoke Sesarma to aggregate in high-density grazing and burrowing fronts at the heads of tidal creeks (hereafter, creekheads). Aerial-image analyses reveal that resulting "Sesarma-grazed" creekheads increased in prevalence from 10 ± 2% to 29 ± 5% over the past <25 y and, by tripling creek-incision rates relative to nongrazed creekheads, have increased marsh-landscape drainage density by 8 to 35% across the region. Field experiments further demonstrate that Sesarma-grazed creekheads, through their removal of vegetation that otherwise obstructs predator access, enhance the vulnerability of macrobenthic invertebrates to predation and strongly reduce secondary production across adjacent marsh platforms. Thus, sea-level rise is creating conditions within which Sesarma functions as a keystone species that is driving dynamic, landscape-scale changes in salt-marsh geomorphic evolution, spatial organization, and species interactions.

3.
Ecol Appl ; 32(2): e2493, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34773674

RESUMO

Many wetlands around the world that occur at the base of watersheds are under threat from land-use change, hydrological alteration, nutrient pollution, and invasive species. A relevant measure of whether the ecological character of these ecosystems has changed is the species diversity of wetland-dependent waterbirds, especially those of conservation value. Here, we evaluate the potential mechanisms controlling variability over time and space in avian species diversity of the wetlands in the Palo Verde National Park, a Ramsar Site of international importance in Costa Rica. To do so, we assessed the relative importance of several key wetland condition metrics (i.e., surface water depth, wetland extent, and vegetation greenness), and temporal fluctuations in these metrics, in predicting the abundance of five waterbirds of high conservation value as well as overall waterbird diversity over a 9-yr period. Generalized additive models revealed that mean NDVI, an indicator of vegetation greenness, combined with a metric used to evaluate temporal fluctuations in the wetland extent best predicted four of the five waterbird species of high conservation value as well as overall waterbird species richness and diversity. Black-bellied Whistling-ducks, which account for over one-half of all waterbird individuals, and all waterbird species together were better predicted by including surface water depth along with wetland extent and its fluctuations. Our calibrated species distribution model confidently quantified monthly averages of the predicted total waterbird abundances in seven of the 10 sub-wetlands making up the Ramsar Site and confirmed that the biophysical diversity of this entire wetland system is important to supporting waterbird populations both as a seasonal refuge and more permanently. This work further suggests that optimizing the timing and location of ongoing efforts to reduce invasive vegetation cover may be key to avian conservation by increasing waterbird habitat.


Assuntos
Ecossistema , Áreas Alagadas , Animais , Aves , Conservação dos Recursos Naturais , Costa Rica
4.
J Environ Manage ; 312: 114823, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313150

RESUMO

Mangroves provide critical ecosystems services, contributing an estimated 42 billion US dollars to global fisheries, storing 25.5 million tons of carbon per year, and providing flood protection to over 15 million people annually. Yet, they are increasingly threatened by factors ranging from local resource exploitation to global climate change, with an estimated 35% of mangrove forests lost in the past two decades. These threats are difficult to manage due to the intrinsic characteristics of mangrove systems and their provisioning services, and their transboundary and pan-global nature. Due to their unique intertidal ecological niche, mangroves are often treated as a "common pool resource" within national legal frameworks, making them particularly susceptible to exploitation. Moreover, they form ecological connections through numerous biotic and abiotic processes that cross political boundaries. Because of these qualities a cross-scale nested framework of international, regional, and local coordination is necessary to successfully sustain mangrove ecosystems and their valuable services. Although coordination across the geopolitical spectrum is often cited as a need for effective management of common resources such as mangroves, there has been no formal analysis of mangrove multiscale governance. In this paper we address this gap by providing a comprehensive analysis of interactions between and within international, regional, and local mangrove management regimes and examine the challenges and opportunities such multiscale governance frameworks present. We highlight Costa Rica as a case study to demonstrate the universal relevance and potential of multi-scale governance and explore its downscale potential. Using Elinor Ostrom's principles for self-governance of the commons as our touchstone, we identify where improvements to the status quo could be implemented to increase its effectiveness of the current frameworks to meet the ongoing challenge of managing mangrove-derived resources and services in the face of a changing climate and human needs.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Mudança Climática , Pesqueiros , Humanos , Áreas Alagadas
5.
J Environ Manage ; 296: 113178, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34225043

RESUMO

Formed at the confluence of marine and fresh waters, estuaries experience both the seaside pressures of rising sea levels and increasing storm severity, and watershed and precipitation changes that are shifting the quality and quantity of freshwater and sediments delivered from upstream sources. Boating, shoreline hardening, harvesting pressure, and other signatures of human activity are also increasing as populations swell in coastal regions. Given this shifting landscape of pressures, the factors most threatening to estuary health and stability are often uncertain. To identify the greatest contemporary threats to coastal wetlands and oyster reefs across the southeastern United States (Mississippi to North Carolina), we summarized recent population growth and land-cover change and surveyed estuarine management and science experts. From 1996 to 2019, human population growth in the region varied from a 17% decrease to a 171% increase (mean = +43%) with only 5 of the 72 SE US counties losing population, and nearly half growing by more than 40%. Individual counties experienced between 999 and 19,253 km2 of new development (mean: 5725 km2), with 1-5% (mean: 2.6%) of undeveloped lands undergoing development over this period across the region. Correspondingly, our survey of 169 coastal experts highlighted development, shoreline hardening, and upstream modifications to freshwater flow as the most important local threats facing coastal wetlands. Similarly, experts identified development, upstream modifications to freshwater flow, and overharvesting as the most important local threats to oyster reefs. With regards to global threats, experts categorized sea level rise as the most pressing to wetlands, and acidification and precipitation changes as the most pressing to oyster reefs. Survey respondents further identified that more research, driven by collaboration among scientists, engineers, industry professionals, and managers, is needed to assess how precipitation changes, shoreline hardening, and sea level rise are affecting coastal ecosystem stability and function. Due to the profound role of humans in shaping estuarine health, this work highlights that engaging property owners, recreators, and municipalities to implement strategies to improve estuarine health will be vital for sustaining coastal systems in the face of global change.


Assuntos
Ostreidae , Áreas Alagadas , Animais , Ecossistema , Estuários , Humanos , North Carolina
6.
Environ Sci Technol ; 54(18): 10989-11001, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786558

RESUMO

Studies evaluating the mechanisms underpinning the biomagnification of polychlorinated biphenyls (PCBs), a globally prevalent group of regulated persistent organic pollutants, commonly couple chemical and stable isotope analyses to identify bioaccumulation pathways. Due to analytical costs constraining the scope, sample size, and range of congeners analyzed, and variation in methodologies preventing cross-study syntheses, how PCBs biomagnify at food web, regional, and global scales remains uncertain. To overcome these constraints, we compiled diet (stable isotopes) data and lipid-normalized concentrations of sum total PCB (PCBST), seven indicator PCB congeners, and their sum (PCB∑7). Our analyses revealed that the number of congeners analyzed, region, and class most strongly predicted PCBST, while similarly, region, class, and feeding location best predicted PCB∑7 and all seven congeners. We also discovered that PCBST, PCB∑7, and the seven indicator congeners all occur in higher concentrations in freshwater than marine ecosystems but are more likely to biomagnify in the latter. Moreover, although the seven congeners vary in their propensity to biomagnify, their trophic magnification factors are all generally greater in the Atlantic than the Pacific. Thus, novel insights regarding PCB biomagnification across taxonomic, food webs, regional, and global scales can be gleaned by leveraging existing data to overcome analytical constraints.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Bioacumulação , Ecossistema , Cadeia Alimentar , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise
8.
Proc Biol Sci ; 286(1917): 20191978, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31847771

RESUMO

Restoration efforts have been escalating worldwide in response to widespread habitat degradation. However, coastal restoration attempts notoriously vary in their ability to establish resilient, high-functioning ecosystems. Conventional restoration attempts disperse transplants in competition-minimizing arrays, yet recent studies suggest that clumping transplants to maximize facilitative interactions may improve restoration success. Here, we modify the stress gradient hypothesis to generate predictions about where each restoration design will perform best across environmental stress gradients. We then test this conceptual model with field experiments manipulating transplant density and configuration across dune elevations and latitudes. In hurricane-damaged Georgia (USA) dunes, grass transplanted in competition-minimizing (low-density, dispersed) arrays exhibited the highest growth, resilience to disturbance and dune formation in low-stress conditions. In contrast, transplants survived best in facilitation-maximizing (high-density, clumped) arrays in high-stress conditions, but these benefits did not translate to higher transplant growth or resilience. In a parallel experiment in Massachusetts where dune grasses experience frequent saltwater inundation, fewer transplants survived, suggesting that there are thresholds above which intraspecific facilitation cannot overcome local stressors. These results suggest that ecological theory can be used to guide restoration strategies based on local stress regimes, maximizing potential restoration success and return-on-investment of future efforts.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Estresse Fisiológico , Georgia , Massachusetts , Poaceae/fisiologia
9.
Ecol Lett ; 21(11): 1681-1692, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30141246

RESUMO

Foundation species enhance biodiversity and multifunctionality across many systems; however, whether foundation species patch configuration mediates their ecological effects is unknown. In a 6-month field experiment, we test which attributes of foundation species patch configuration - i.e. patch size, total patch area, perimeter, area-perimeter ratio, or connectivity - control biodiversity, stability and multifunctionality by adding a standardised density of mussel foundation species in patches of 1, 5, 10, 30, 60, 90 or 180 individuals to a southeastern US salt marsh. Over 67% of response variables increased with clustering of mussels, responses that were driven by increases in area-perimeter ratio (33%), decreases in perimeter (29%), or increases in patch size (5%), suggesting sensitivity to external stressors and/or dependence on foundation species-derived niche availability and segregation. Thus, mussel configuration - by controlling the relative distribution of multidimensional patch interior and edge niche space - critically modulates this foundation species' effects on ecosystem structure, stability and function.


Assuntos
Biodiversidade , Poaceae , Áreas Alagadas , Ecologia , Ecossistema , Humanos
10.
Ecology ; 99(12): 2692-2702, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30307038

RESUMO

Understanding the interactive effects of species invasions and climate change is essential for predicting future shifts in biodiversity. Because multiple stressors can interact in synergistic or antagonistic ways, it is notoriously difficult to anticipate their combined effects on species assemblages. However, some hypotheses predict that plant invasions will become increasingly problematic as climate change improves conditions for invaders or lowers the biotic resistance of native communities. In a 4-yr field experiment, we quantified the individual and interactive effects of invasion by a globally problematic C4 grass, Imperata cylindrica, and chronic simulated drought imposed by rainout shelters on the whole plant communities of regenerating longleaf pine forest. Invasion both inhibited plant colonization and enhanced plot-level extinctions, resulting in a severe (60%) loss of plant diversity across all functional groups, including perennial grasses and forbs, annual forbs, and woody species and dramatic shifts in community composition. Experimental drought reduced diversity by 20%, and caused a shift in the dominant functional groups, but had no significant effect on cover of the invader. The invader partially ameliorated water stress in the drought treatment such that invaded plots had higher soil moisture than uninvaded plots. Consequently, the combined effects of invasion and drought were lower than expected from an additive model of multiple stressors. These findings, which may have broader implications for how other C4 grass invaders will interact with drought to shift native community dynamics, challenge the perception that climate change will exacerbate invasions. In revealing that invasive species pose a major threat to the diversity and structure of native communities despite their moderating effects on abiotic stress, this work also highlights that management of aggressive invaders may be critical to preserving biodiversity regardless of future climate.


Assuntos
Secas , Poaceae , Biodiversidade , Mudança Climática , Espécies Introduzidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA