Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Development ; 143(2): 298-305, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26657764

RESUMO

During embryogenesis the sea urchin early pluteus larva differentiates 40-50 neurons marked by expression of the pan-neural marker synaptotagmin B (SynB) that are distributed along the ciliary band, in the apical plate and pharyngeal endoderm, and 4-6 serotonergic neurons that are confined to the apical plate. Development of all neurons has been shown to depend on the function of Six3. Using a combination of molecular screens and tests of gene function by morpholino-mediated knockdown, we identified SoxC and Brn1/2/4, which function sequentially in the neurogenic regulatory pathway and are also required for the differentiation of all neurons. Misexpression of Brn1/2/4 at low dose caused an increase in the number of serotonin-expressing cells and at higher dose converted most of the embryo to a neurogenic epithelial sphere expressing the Hnf6 ciliary band marker. A third factor, Z167, was shown to work downstream of the Six3 and SoxC core factors and to define a branch specific for the differentiation of serotonergic neurons. These results provide a framework for building a gene regulatory network for neurogenesis in the sea urchin embryo.


Assuntos
Embrião não Mamífero/metabolismo , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/metabolismo , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Embrião não Mamífero/citologia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Proteína Homeobox SIX3
2.
PLoS Biol ; 11(1): e1001467, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23335859

RESUMO

Patterning the neuroectoderm along the anterior-posterior (AP) axis is a critical event in the early development of deuterostome embryos. However, the mechanisms that regulate the specification and patterning of the neuroectoderm are incompletely understood. Remarkably, the anterior neuroectoderm (ANE) of the deuterostome sea urchin embryo expresses many of the same transcription factors and secreted modulators of Wnt signaling, as does the early vertebrate ANE (forebrain/eye field). Moreover, as is the case in vertebrate embryos, confining the ANE to the anterior end of the embryo requires a Wnt/ß-catenin-dependent signaling mechanism. Here we use morpholino- or dominant negative-mediated interference to demonstrate that the early sea urchin embryo integrates information not only from Wnt/ß-catenin but also from Wnt/Fzl5/8-JNK and Fzl1/2/7-PKC pathways to provide precise spatiotemporal control of neuroectoderm patterning along its AP axis. Together, through the Wnt1 and Wnt8 ligands, they orchestrate a progressive posterior-to-anterior wave of re-specification that restricts the initial, ubiquitous, maternally specified, ANE regulatory state to the most anterior blastomeres. There, the Wnt receptor antagonist, Dkk1, protects this state through a negative feedback mechanism. Because these different Wnt pathways converge on the same cell fate specification process, our data suggest they may function as integrated components of an interactive Wnt signaling network. Our findings provide strong support for the idea that the sea urchin ANE regulatory state and the mechanisms that position and define its borders represent an ancient regulatory patterning system that was present in the common echinoderm/vertebrate ancestor.


Assuntos
Padronização Corporal/genética , Placa Neural/embriologia , Strongylocentrotus purpuratus/embriologia , Proteínas Wnt/metabolismo , Animais , Blastômeros/metabolismo , Padronização Corporal/fisiologia , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Morfolinos/genética , Placa Neural/metabolismo , RNA Mensageiro/genética , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
3.
Development ; 138(17): 3613-23, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21828090

RESUMO

Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently Nodal and BMP. These signals act to specify and localize the embryonic neural fields - the anterior neuroectoderm and the more posterior ciliary band neuroectoderm - during development. Here, we review these conserved nervous system patterning signals and consider how the relationships between them might have changed during deuterostome evolution.


Assuntos
Padronização Corporal/fisiologia , Sistema Nervoso/metabolismo , Ouriços-do-Mar/enzimologia , Ouriços-do-Mar/metabolismo , Animais , Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteína Nodal/genética , Proteína Nodal/metabolismo , Ouriços-do-Mar/crescimento & desenvolvimento , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
4.
Development ; 138(19): 4233-43, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21852402

RESUMO

Partitioning ectoderm precisely into neurogenic and non-neurogenic regions is an essential step for neurogenesis of almost all bilaterian embryos. Although it is widely accepted that antagonism between BMP and its inhibitors primarily sets up the border between these two types of ectoderm, it is unclear how such extracellular, diffusible molecules create a sharp and precise border at the single-cell level. Here, we show that Fez, a zinc finger protein, functions as an intracellular factor attenuating BMP signaling specifically within the neurogenic region at the anterior end of sea urchin embryos, termed the animal plate. When Fez function is blocked, the size of this neurogenic ectoderm becomes smaller than normal. However, this reduction is rescued in Fez morphants simply by blocking BMP2/4 translation, indicating that Fez maintains the size of the animal plate by attenuating BMP2/4 function. Consistent with this, the gradient of BMP activity along the aboral side of the animal plate, as measured by pSmad1/5/8 levels, drops significantly in cells expressing Fez and this steep decline requires Fez function. Our data reveal that this neurogenic ectoderm produces an intrinsic system that attenuates BMP signaling to ensure the establishment of a stable, well-defined neural territory, the animal plate.


Assuntos
Proteínas Morfogenéticas Ósseas/química , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Smad/metabolismo , Fatores de Transcrição/fisiologia , Dedos de Zinco , Animais , Blástula/metabolismo , Padronização Corporal/genética , Linhagem da Célula , Ectoderma/metabolismo , Embrião não Mamífero/metabolismo , Imuno-Histoquímica/métodos , Modelos Biológicos , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Ouriços-do-Mar , Fatores de Transcrição/genética
5.
Proc Natl Acad Sci U S A ; 108(22): 9143-7, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21576476

RESUMO

Although it is well established that neural cells are ectodermal derivatives in bilaterian animals, here we report the surprising discovery that some of the pharyngeal neurons of sea urchin embryos develop de novo from the endoderm. The appearance of these neurons is independent of mouth formation, in which the stomodeal ectoderm joins the foregut. The neurons do not derive from migration of ectoderm cells to the foregut, as shown by lineage tracing with the photoactivatable protein KikGR. Their specification and development depend on expression of Nkx3-2, which in turn depends on Six3, both of which are expressed in the foregut lineage. SoxB1, which is closely related to the vertebrate Sox factors that support a neural precursor state, is also expressed in the foregut throughout gastrulation, suggesting that this region of the fully formed archenteron retains an unexpected pluripotency. Together, these results lead to the unexpected conclusion that, within a cell lineage already specified to be endoderm by a well-established gene regulatory network [Peter IS, Davidson EH (2010) Dev Biol 340:188-199], there also operates a Six3/Nkx3-2-dependent pathway required for the de novo specification of some of the neurons in the pharynx. As a result, neuroendoderm precursors form in the foregut aided by retention of a SoxB1-dependent pluripotent state.


Assuntos
Endoderma/citologia , Regulação da Expressão Gênica no Desenvolvimento , Intestinos/citologia , Animais , Linhagem da Célula , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Oligonucleotídeos Antissenso/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Ouriços-do-Mar , Fatores de Tempo , Proteína Homeobox SIX3
6.
Dev Biol ; 363(1): 74-83, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22210002

RESUMO

Serotonergic neurons differentiate in the neurogenic animal plate ectoderm of the sea urchin embryo. The regulatory mechanisms that control the specification or differentiation of these neurons in the sea urchin embryo are not yet understood, although, after the genome was sequenced, many genes encoding transcription factors expressed in this region were identified. Here, we report that zinc finger homeobox (zfhx1/z81) is expressed in serotonergic neural precursor cells, using double in situ hybridization screening with a serotonergic neural marker, tryptophan 5-hydroxylase (tph) encoding a serotonin synthase that is required for the differentiation of serotonergic neurons. zfhx1/z81 begins to be expressed at gastrula stage in individual cells in the anterior neuroectoderm, some of which also express delta. zfhx1/z81 expression gradually disappears as neural differentiation begins with tph expression. When the translation of Zfhx1/Z81 is blocked by morpholino injection, embryos express neither tph nor the neural marker synaptotagminB in cells of the animal plate, and serotonergic neurons do not differentiate. In contrast, Zfhx1/Z81 morphants do express fez, another neural precursor marker, which appears to function in the initial phase of specification/differentiation of serotonergic neurons. In addition, zfhx1/z81 is one of the targets suppressed in the animal plate by anti-neural signals such as Nodal as well as Delta-Notch. We conclude that Zfhx1/Z81 functions during the specification of individual anterior neural precursors and promotes the expression of tph and synaptotagminB, required for the differentiation of serotonergic neurons.


Assuntos
Diferenciação Celular/genética , Genes Homeobox/genética , Hemicentrotus/genética , Neurônios Serotoninérgicos/metabolismo , Dedos de Zinco/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Gástrula/embriologia , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Hemicentrotus/embriologia , Proteínas de Homeodomínio/genética , Hibridização In Situ/métodos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Modelos Genéticos , Dados de Sequência Molecular , Proteína Nodal/genética , Receptores Notch/genética , Homologia de Sequência de Aminoácidos , Neurônios Serotoninérgicos/citologia , Transdução de Sinais/genética , Sinaptotagminas/genética , Triptofano Hidroxilase/genética
7.
Dev Cell ; 14(1): 97-107, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18194656

RESUMO

The primary (animal-vegetal) (AV) and secondary (oral-aboral) (OA) axes of sea urchin embryos are established by distinct regulatory pathways. However, because experimental perturbations of AV patterning also invariably disrupt OA patterning and radialize the embryo, these two axes must be mechanistically linked. Here we show that FoxQ2, which is progressively restricted to the animal plate during cleavage stages, provides this linkage. When AV patterning is prevented by blocking the nuclear function of beta-catenin, the animal plate where FoxQ2 is expressed expands throughout the future ectoderm, and expression of nodal, which initiates OA polarity, is blocked. Surprisingly, nodal transcription and OA differentiation are rescued simply by inhibiting FoxQ2 translation. Therefore, restriction of FoxQ2 to the animal plate is a crucial element of canonical Wnt signaling that coordinates patterning along the AV axis with the initiation of OA specification.


Assuntos
Padronização Corporal/fisiologia , Embrião não Mamífero/fisiologia , Ouriços-do-Mar/embriologia , Fatores de Transcrição/fisiologia , Proteínas Wnt/fisiologia , Animais , Ectoderma/crescimento & desenvolvimento , Ectoderma/fisiologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , RNA Mensageiro/genética , Fatores de Transcrição/genética , Proteínas Wnt/genética , beta Catenina/fisiologia
8.
PLoS Biol ; 7(2): e1000029, 2009 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19192949

RESUMO

A major goal of contemporary studies of embryonic development is to understand large sets of regulatory changes that accompany the phenomenon of embryonic induction. The highly resolved sea urchin pregastrular endomesoderm-gene regulatory network (EM-GRN) provides a unique framework to study the global regulatory interactions underlying endomesoderm induction. Vegetal micromeres of the sea urchin embryo constitute a classic endomesoderm signaling center, whose potential to induce archenteron formation from presumptive ectoderm was demonstrated almost a century ago. In this work, we ectopically activate the primary mesenchyme cell-GRN (PMC-GRN) that operates in micromere progeny by misexpressing the micromere determinant Pmar1 and identify the responding EM-GRN that is induced in animal blastomeres. Using localized loss-of -function analyses in conjunction with expression of endo16, the molecular definition of micromere-dependent endomesoderm specification, we show that the TGFbeta cytokine, ActivinB, is an essential component of this induction in blastomeres that emit this signal, as well as in cells that respond to it. We report that normal pregastrular endomesoderm specification requires activation of the Pmar1-inducible subset of the EM-GRN by the same cytokine, strongly suggesting that early micromere-mediated endomesoderm specification, which regulates timely gastrulation in the sea urchin embryo, is also ActivinB dependent. This study unexpectedly uncovers the existence of an additional uncharacterized micromere signal to endomesoderm progenitors, significantly revising existing models. In one of the first network-level characterizations of an intercellular inductive phenomenon, we describe an important in vivo model of the requirement of ActivinB signaling in the earliest steps of embryonic endomesoderm progenitor specification.


Assuntos
Ativinas/genética , Indução Embrionária/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Mesoderma/embriologia , Ouriços-do-Mar/genética , Animais , Blastômeros/citologia , Moléculas de Adesão Celular/genética , Desenvolvimento Embrionário/genética , Gástrula/citologia , Gástrula/crescimento & desenvolvimento , Mesoderma/citologia , Ouriços-do-Mar/embriologia , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética
9.
Dev Biol ; 347(1): 71-81, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20709054

RESUMO

The ciliary band is a distinct region of embryonic ectoderm that is specified between oral and aboral ectoderm. Flask-shaped ciliary cells and neurons differentiate in this region and they are patterned to form an integrated tissue that functions as the principal swimming and feeding organ of the larva. TGFß signaling, which is known to mediate oral and aboral patterning of the ectoderm, has been implicated in ciliary band formation. We have used morpholino knockdown and ectopic expression of RNA to alter TGFß signaling at the level of ligands, receptors, and signal transduction components and assessed the differentiation and patterning of the ciliary band cells and associated neurons. We propose that the primary effects of these signals are to position the ciliary cells, which in turn support neural differentiation. We show that Nodal signaling, which is known to be localized by Lefty, positions the oral margin of the ciliary band. Signaling from BMP through Alk3/6, affects the position of the oral and aboral margins of the ciliary band. Since both Nodal and BMP signaling produce ectoderm that does not support neurogenesis, we propose that formation of a ciliary band requires protection from these signals. Expression of BMP2/4 and Nodal suppress neural differentiation. However, the response to receptor knockdown or dominant-negative forms of signal transduction components indicate signaling is not acting directly on unspecified ectoderm cells to prevent their differentiation as neurons. Instead, it produces a restricted field of ciliary band cells that supports neurogenesis. We propose a model that incorporates spatially regulated control of Nodal and BMP signaling to determine the position and differentiation of the ciliary band, and subsequent neural patterning.


Assuntos
Padronização Corporal , Cílios/metabolismo , Embrião não Mamífero/citologia , Neurônios/metabolismo , Ouriços-do-Mar/embriologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Ectoderma/citologia , Ectoderma/metabolismo , Embrião não Mamífero/metabolismo , Larva/citologia , Larva/metabolismo , Modelos Biológicos , Sistema Nervoso/citologia , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Neurônios/citologia , Proteína Nodal/metabolismo , Ouriços-do-Mar/citologia , Ouriços-do-Mar/metabolismo
10.
Dev Biol ; 348(1): 67-75, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20875818

RESUMO

In sea urchin embryos, the apical tuft forms within the neurogenic animal plate. When FoxQ2, one of the earliest factors expressed specifically in the animal plate by early blastula stage, is knocked down, the structure of the apical tuft is altered. To determine the basis of this phenotype, we identified FoxQ2-dependent genes using microarray analysis. The most strongly down-regulated gene in FoxQ2 morphants encodes a protein with ankyrin repeats region in its N-terminal domain. We named this gene ankAT-1, Ankyrin-containing gene specific for Apical Tuft. Initially its expression in the animal pole region of very early blastula stage embryos is FoxQ2-independent but becomes FoxQ2-dependent beginning at mesenchyme blastula stage and continuing in the animal plate of 3-day larvae. Furthermore, like FoxQ2, this gene is expressed throughout the expanded apical tuft region that forms in embryos lacking nuclear ß-catenin. When AnkAT-1 is knocked-down by injecting a morpholino, the cilia at the animal plate in the resulting embryos are much shorter and their motility is less than that of motile cilia in other ectoderm cells, and remains similar to that of long apical tuft cilia. We conclude that AnkAT-1 is involved in regulating the length of apical tuft cilia.


Assuntos
Cílios/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Hemicentrotus/embriologia , Strongylocentrotus purpuratus/embriologia , Animais , Blástula/metabolismo , Blástula/ultraestrutura , Polaridade Celular , Ectoderma/citologia , Ectoderma/ultraestrutura , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Fatores de Transcrição Forkhead/fisiologia , Técnicas de Silenciamento de Genes , Hemicentrotus/genética , Hibridização In Situ , Larva , Subfamília A de Receptores Semelhantes a Lectina de Células NK/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos Antissenso/farmacologia , Transdução de Sinais/fisiologia , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/crescimento & desenvolvimento , Fator de Crescimento Transformador beta/fisiologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia
11.
Genesis ; 52(3): 157, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24659345
12.
PLoS One ; 12(4): e0176479, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28448610

RESUMO

Mucin-type O-glycosylation is a ubiquitous posttranslational modification in which N-Acetylgalactosamine (GalNAc) is added to the hydroxyl group of select serine or threonine residues of a protein by the family of UDP-GalNAc:Polypeptide N-Acetylgalactosaminyltransferases (GalNAc-Ts; EC 2.4.1.41). Previous studies demonstrate that O-glycosylation plays essential roles in protein function, cell-cell interactions, cell polarity and differentiation in developing mouse and Drosophila embryos. Although this type of protein modification is highly conserved among higher eukaryotes, little is known about this family of enzymes in echinoderms, basal deuterostome relatives of the chordates. To investigate the potential role of GalNAc-Ts in echinoderms, we have begun the characterization of this enzyme family in the purple sea urchin, S. purpuratus. We have fully or partially cloned a total of 13 genes (SpGalnts) encoding putative sea urchin SpGalNAc-Ts, and have confirmed enzymatic activity of five recombinant proteins. Amino acid alignments revealed high sequence similarity among sea urchin and mammalian glycosyltransferases, suggesting the presence of putative orthologues. Structural models underscored these similarities and helped reconcile some of the substrate preferences observed. Temporal and spatial expression of SpGalnt transcripts, was studied by whole-mount in situ hybridization. We found that many of these genes are transcribed early in developing embryos, often with restricted expression to the endomesodermal region. Multicolor fluorescent in situ hybridization (FISH) demonstrated that transcripts encoding SpGalnt7-2 co-localized with both Endo16 (a gene expressed in the endoderm), and Gcm (a gene expressed in secondary mesenchyme cells) at the early blastula stage, 20 hours post fertilization (hpf). At late blastula stage (28 hpf), SpGalnt7-2 message co-expresses with Gcm, suggesting that it may play a role in secondary mesenchyme development. We also discovered that morpholino-mediated knockdown of SpGalnt13 transcripts, results in a deficiency of embryonic skeleton and neurons, suggesting that mucin-type O-glycans play essential roles during embryonic development in S. purpuratus.


Assuntos
Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Strongylocentrotus purpuratus/embriologia , Strongylocentrotus purpuratus/genética , Acetilgalactosamina/metabolismo , Sequência de Aminoácidos , Animais , Técnicas de Silenciamento de Genes , Modelos Moleculares , Mucinas/metabolismo , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Neurônios/metabolismo , Conformação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Strongylocentrotus purpuratus/citologia , Strongylocentrotus purpuratus/metabolismo
13.
Dev Growth Differ ; 37(1): 57-68, 1995 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37282207

RESUMO

We have analyzed a gene, designated VEB4, that is expressed transiently in very early blastulae of the sea urchin, Strongylocentrotus purpuratus. Sequence analysis of the complete open reading frame shows that VEB4 encodes an unusual, highly charged protein with a pl of 9.55. We show here that VEB4 mRNA accumulate in a spatial pattern that is indistinguishable from that of two other recently described genes encoding metallo-endoproteases, SpAN, related to astacin and SpHE, the hatching enzyme (Reynolds et al. 1992). VEB4 and other members of this gene set encode the earliest strictly zygotic gene products that have been identified. The asymmetric accumulation of VEB4 mRNA in non-vegetal blastomeres of the 16 cell embryo and their descendants reflects the animal-vegetal maternal developmental axis.

14.
Dev Growth Differ ; 35(2): 139-151, 1993 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37280843

RESUMO

We have determined the expression pattern of arylsulfatase in embryos of the sea urchin Strongylocentrotus purpuratus. Polyclonal antibodies raised against a fusion protein containing sequences encoded by SpARSI (Yang et al., 1989, Dev. Biol. 135: 53-61, 1989) detect several peptides of 65-70 kD on immunoblots. Treatment with glycopeptidase F shows that at least one of these peptides is modified by N-linked glycosylation, which accounts for some of the peptide diversity. We have also identified a second arylsulfatase gene (SpARSII) whose sequence is highly similar to ARS, a gene expressed in the Hemicentrotus pulcherrimus embryo. Arylsulfatase activity is detectable in unfertilized eggs, in which only SpARSII mRNA can be detected. Both SpARSI and SpARSII mRNAs increase greatly in abundance during embryogenesis accompanied by parallel changes in arylsulfatase activity and immunoreactivity. Immunohistochemistry with the anti-SpARSI antibody shows that arylsulfatase accumulates primarily along the apical surface of the aboral ectoderm of pluteus larvae, and to a lesser extent along portions of oral ectoderm. At earlier stages, the protein is more uniformly distributed along all presumptive ectoderm, reflecting a more uniform mRNA distribution. Treatment of embryos with glycine-EDTA, which dissociates but does not lyse cells of the embryo, releases virtually all enzymatic activity and all immunoreactive protein. Embryos cultured in sulfate-free sea water, which arrest at gastrula stage, show normal accumulation and secretion of peptide detected with the SpARSI antibody.

15.
Methods Mol Biol ; 1128: 249-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24567220

RESUMO

The sea urchin embryo is an important model system for developmental gene regulatory network (GRN) analysis. This chapter describes the use of multicolor fluorescent in situ hybridization (FISH) as well as a combination of FISH and immunohistochemistry in sea urchin embryonic GRN studies. The methods presented here can be applied to a variety of experimental settings where accurate spatial resolution of multiple gene products is required for constructing a developmental GRN.


Assuntos
Redes Reguladoras de Genes , Hibridização in Situ Fluorescente/métodos , Ouriços-do-Mar/genética , Animais , Blástula/metabolismo , Corantes Fluorescentes/química , Regulação da Expressão Gênica no Desenvolvimento , Ouriços-do-Mar/metabolismo , Coloração e Rotulagem , Fixação de Tecidos
16.
Science ; 335(6068): 590-3, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22301319

RESUMO

The segregation of embryonic endomesoderm into separate endoderm and mesoderm fates is not well understood in deuterostomes. Using sea urchin embryos, we showed that Notch signaling initiates segregation of the endomesoderm precursor field by inhibiting expression of a key endoderm transcription factor in presumptive mesoderm. The regulatory circuit activated by this transcription factor subsequently maintains transcription of a canonical Wnt (cWnt) ligand only in endoderm precursors. This cWnt ligand reinforces the endoderm state, amplifying the distinction between emerging endoderm and mesoderm. Before gastrulation, Notch-dependent nuclear export of an essential ß-catenin transcriptional coactivator from mesoderm renders it refractory to cWnt signals, insulating it against an endoderm fate. Thus, we report that endomesoderm segregation is a progressive process, requiring a succession of regulatory interactions between cWnt and Notch signaling.


Assuntos
Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Endoderma/fisiologia , Receptores Notch/metabolismo , Ouriços-do-Mar/embriologia , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Blastômeros/citologia , Blastômeros/fisiologia , Blástula/fisiologia , Embrião não Mamífero/embriologia , Endoderma/embriologia , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Ligantes , Mesoderma/embriologia , Mesoderma/fisiologia , Receptores Notch/genética , Ouriços-do-Mar/genética , Ouriços-do-Mar/fisiologia , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Wnt/genética , Via de Sinalização Wnt , beta Catenina/metabolismo
17.
Nat Commun ; 2: 592, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22186888

RESUMO

Food can act as a powerful stimulus, eliciting metabolic, behavioural and developmental responses. These phenotypic changes can alter ecological and evolutionary processes; yet, the molecular mechanisms underlying many plastic phenotypic responses remain unknown. Here we show that dopamine signalling through a type-D(2) receptor mediates developmental plasticity by regulating arm length in pre-feeding sea urchin larvae in response to food availability. Although prey-induced traits are often thought to improve food acquisition, the mechanism underlying this plastic response acts to reduce feeding structure size and subsequent feeding rate. Consequently, the developmental programme and/or maternal provisioning predetermine the maximum possible feeding rate, and food-induced dopamine signalling reduces food acquisition potential during periods of abundant resources to preserve maternal energetic reserves. Sea urchin larvae may have co-opted the widespread use of food-induced dopamine signalling from behavioural responses to instead alter their development.


Assuntos
Adaptação Fisiológica , Dopamina/metabolismo , Larva/anatomia & histologia , Morfogênese/fisiologia , Receptores de Dopamina D2/metabolismo , Ouriços-do-Mar/fisiologia , Animais , Evolução Biológica , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2 , Comportamento Alimentar , Alimentos , Larva/fisiologia , Microesferas , Fenótipo , Comportamento Predatório , Receptores de Dopamina D2/agonistas , Transdução de Sinais
18.
Development ; 136(7): 1179-89, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19270175

RESUMO

Two major signaling centers have been shown to control patterning of sea urchin embryos. Canonical Wnt signaling in vegetal blastomeres and Nodal signaling in presumptive oral ectoderm are necessary and sufficient to initiate patterning along the primary and secondary axes, respectively. Here we define and characterize a third patterning center, the animal pole domain (APD), which contains neurogenic ectoderm, and can oppose Wnt and Nodal signaling. The regulatory influence of the APD is normally restricted to the animal pole region, but can operate in most cells of the embryo because, in the absence of Wnt and Nodal, the APD expands throughout the embryo. We have identified many constituent APD regulatory genes expressed in the early blastula and have shown that expression of most of them requires Six3 function. Furthermore, Six3 is necessary for the differentiation of diverse cell types in the APD, including the neurogenic animal plate and immediately flanking ectoderm, indicating that it functions at or near the top of several APD gene regulatory networks. Remarkably, it is also sufficient to respecify the fates of cells in the rest of the embryo, generating an embryo consisting of a greatly expanded, but correctly patterned, APD. A fraction of the large group of Six3-dependent regulatory proteins are orthologous to those expressed in the vertebrate forebrain, suggesting that they controlled formation of the early neurogenic domain in the common deuterostome ancestor of echinoderms and vertebrates.


Assuntos
Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Strongylocentrotus purpuratus/embriologia , Strongylocentrotus purpuratus/metabolismo , Animais , Sequência de Bases , Padronização Corporal/genética , Padronização Corporal/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proteínas do Olho/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reguladores , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Proteína Nodal/genética , Proteína Nodal/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Strongylocentrotus purpuratus/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Homeobox SIX3
19.
Evol Dev ; 9(1): 10-24, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17227363

RESUMO

Molecular paleoecology is the application of molecular data to test hypotheses made by paleoecological scenarios. Here, we use gene regulatory analysis to test between two competing paleoecological scenarios put forth to explain the evolution of complex life cycles. The first posits that early bilaterians were holobenthic, and the evolution of macrophagous grazing drove the exploitation of the pelagos by metazoan eggs and embryos, and eventually larvae. The alternative hypothesis predicts that early bilaterians were holopelagic, and new adult stages were added on when these holopelagic forms began to feed on the benthos. The former hypothesis predicts that the larvae of protostomes and deuterostomes are not homologous, with the implication that larval-specific structures, including the apical organ, are the products of convergent evolution, whereas the latter hypothesis predicts homology of larvae, specifically homology of the apical organ. We show that in the sea urchin, Strongylocentrotus purpuratus, the transcription factors NK2.1 and HNF6 are necessary for the correct spatial expression profiles of five different cilia genes. All of these genes are expressed exclusively in the apical plate after the mesenchyme-blastula stage in cells that also express NK2.1 and HNF6. In addition, abrogation of SpNK2.1 results in embryos that lack the apical tuft. However, in the red abalone, Haliotis rufescens, NK2.1 and HNF6 are not expressed in any cells that also express these same five cilia genes. Nonetheless, like the sea urchin, the gastropod expresses both NK2.1 and FoxA around the stomodeum and foregut, and FoxA around the proctodeum. As we detected no similarity in the development of the apical tuft between the sea urchin and the abalone, these molecular data are consistent with the hypothesis that the evolution of mobile, macrophagous metazoans drove the evolution of complex life cycles multiple times independently in the late Precambrian.


Assuntos
Ecologia , Estágios do Ciclo de Vida , Paleontologia , Animais , Sequência de Bases , Primers do DNA , DNA Complementar , Reação em Cadeia da Polimerase , Ouriços-do-Mar/genética , Ouriços-do-Mar/crescimento & desenvolvimento , Técnica de Subtração , Fatores de Transcrição/genética
20.
Dev Biol ; 300(1): 476-84, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17007833

RESUMO

We present an initial characterization of a database that contains temporal expression profiles of sequences found in 35,282 gene predictions within the sea urchin genome. The relative RNA abundance for each sequence was determined at 5 key stages of development using high-density oligonucleotide microarrays that were hybridized with populations of polyA+ RNA sequence. These stages were two-cell, which represents maternal RNA, early blastula, the time at which major tissue territories are specified, early and late gastrula, during which important morphogenetic events occur, and the pluteus larva, which marks the culmination of pre-feeding embryogenesis. We provide evidence that the microarray reliably reports the temporal profiles for the large majority of predicted genes, as shown by comparison to data for many genes with known expression patterns. The sensitivity of this assay allows detection of mRNAs whose concentration is only several hundred copies/embryo. The temporal expression profiles indicate that 5% of the gene predictions encode mRNAs that are found only in the maternal population while 24% are embryo-specific. Further, we find that the concentration of >80% of different mRNAs is modulated by more than a factor of 3 during development. Along with the annotated sea urchin genome sequence and the whole-genome tiling array (the transcriptome, Samanta, M., Tongprasit, W., Istrrail, S., Cameron, R., Tu, Q., Davidson, E., Stolc, V., in press. A high-resolution transcriptome map of the sea urchin embryo. Science), this database proves a valuable resource for designing experiments to test the function of specific genes during development.


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA Mensageiro/genética , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/genética , Animais , Embrião não Mamífero , Desenvolvimento Embrionário/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA