Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Langmuir ; 29(32): 10247-53, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23848357

RESUMO

This work reports an experimental study of the kinetics and mechanisms of gelation of carbon nanotubes (CNTs)-hyaluronic acid (HA) mixtures. These materials are of great interest as functional biogels for future medical applications and tissue engineering. We show that CNTs can induce the gelation of noncovalently modified HA in water. This gelation is associated with a dynamical arrest of a liquid crystal phase separation, as shown by small-angle light scattering and polarized optical microscopy. This phenomenon is reminiscent of arrested phase separations in other colloidal systems in the presence of attractive interactions. The gelation time is found to strongly vary with the concentrations of both HA and CNTs. Near-infrared photoluminescence reveals that the CNTs remain individualized both in fluid and in gel states. It is concluded that the attractive forces interplay are likely weak depletion interactions and not strong van der Waals interactions which could promote CNT rebundling, as observed in other biopolymer-CNT mixtures. The present results clarify the remarkable efficiency of CNT at inducing the gelation of HA, by considering that CNTs easily phase separate as liquid crystals because of their giant aspect ratio.


Assuntos
Ácido Hialurônico/química , Nanotubos de Carbono/química , Géis/síntese química , Géis/química , Humanos , Cinética
2.
J Colloid Interface Sci ; 636: 668-676, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36680957

RESUMO

HYPOTHESIS: The sonochemical exfoliation of graphite in solution has been demonstrated as a promising and easy technique for producing graphene dispersions. This is usually done in organic solvents and leads to unstable dispersions with very low graphene concentration. Ionic liquids (ILs) represent a versatile and safe alternative to traditional organic solvents. A few recent studies reported the use of commercial ILs with bulky anions, such as bis(trifluoromethylsulfonyl)imide, and aromatic cations, such as imidazolium, which favour the exfoliation of graphite through π-π and cation-π interactions. Although recently investigated, the role of aromatic groups on imidazolium cations is still controversial and systematic studies are still necessary. Besides, these studies were limited to liquid dispersions at room temperature. EXPERIMENTS: Herein, we prepared four highly aromatic imidazolium-based ILs, including the newly reported 1-(naphthylmethyl)-3-benzylimidazolium bis(trifluoromethanesulfonyl)imide, [(Np)(Bn)im][NTf2]. These ILs were used for the sonochemical exfoliation of graphite and compared with a commercial benchmark, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [Bmim][NTf2]. FINDINGS: Interestingly, [(Np)(Bn)im][NTf2] allowed reaching solid dispersions at room temperature containing thin few layer graphene sheets with long-term stability (up to 2 years) and high concentration (3.6 mg/mL). Such graphene dispersion combines long-term stability in the solid-state and high processability in the liquid state, by a simple heating above 60 °C.

3.
ACS Appl Mater Interfaces ; 15(27): 32717-32731, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37366586

RESUMO

Non-invasive imaging of morphological changes in biologically relevant lipidic mesophases is essential for the understanding of membrane-mediated processes. However, its methodological aspects need to be further explored, with particular attention paid to the design of new excellent fluorescent probes. Here, we have demonstrated that bright and biocompatible folic acid-derived carbon nanodots (FA CNDs) may be successfully applied as fluorescent markers in one- and two-photon imaging of bioinspired myelin figures (MFs). Structural and optical properties of these new FA CNDs were first extensively characterized; they revealed remarkable fluorescence performance in linear and non-linear excitation regimes, justifying further applications. Then, confocal fluorescence microscopy and two-photon excited fluorescence microscopy were used to investigate a three-dimensional distribution of FA CNDs within the phospholipid-based MFs. Our results showed that FA CNDs are effective markers for imaging various forms and parts of multilamellar microstructures.


Assuntos
Carbono , Ácido Fólico , Carbono/química , Bainha de Mielina , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos
4.
ACS Macro Lett ; 8(8): 984-988, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35619482

RESUMO

This paper presents an efficient way to measure the curing kinetics and gel point, αgel, in epoxy resins from one single experiment. The epoxy curing reaction is herein monitored using in situ and time-resolved near-infrared absorption spectroscopy (NIR). The curing profiles over different isothermal conditions are in good agreement with DSC. Furthermore, the increase of the NIR absorption bands of aromatic rings (unreactive throughout curing) probe the cure shrinkage, as more and more aromatic rings are localized within the fixed sample volume. Therefore, the gel point is determined using the onset of the aromatic absorption increase. The results are in good agreement with the theoretical gel point, as well as DMA results. This innovative approach enables gelation measurements on epoxy neat resins and film composites with an easy-to-perform, accurate, robust, and versatile method.

5.
ACS Nano ; 12(8): 8606-8615, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30088916

RESUMO

The main hurdle preventing the widespread use of single-walled carbon nanotubes remains the lack of methods with which to produce formulations of pristine, unshortened, unfunctionalized, individualized single-walled carbon nanotubes, thus preserving their extraordinary properties. In particular, sonication leads to shortening, which is detrimental to percolation properties (electrical, thermal, mechanical, etc.). Using reductive dissolution and transfer into degassed water, open-ended, water-filled nanotubes can be dispersed as individualized nanotubes in water-dimethyl sulfoxide mixtures, avoiding the use of sonication and surfactant. Closed nanotubes, however, aggregate immediately upon contact with water. Photoluminescence and absorption spectroscopy both point out a very high degree of individualization while retaining lengths of several microns. The resulting transparent conducting films are 1 order of magnitude more conductive than surfactant-based blanks at equal transmittance.

6.
Nat Chem ; 9(4): 347-352, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28338691

RESUMO

Dispersing graphite in water to obtain true (single-layer) graphene in bulk quantity in a liquid has been an unreachable goal for materials scientists in the past decade. Similarly, a diagnostic tool to identify solubilized graphene in situ has been long awaited. Here we show that homogeneous stable dispersions of single-layer graphene (SLG) in water can be obtained by mixing graphenide (negatively charged graphene) solutions in tetrahydrofuran with degassed water and evaporating the organic solvent. In situ Raman spectroscopy of these aqueous dispersions shows all the expected characteristics of SLG. Transmission electron and atomic force microscopies on deposits confirm the single-layer character. The resulting additive-free stable water dispersions contain 400 m2 l-1 of developed graphene surface. Films prepared from these dispersions exhibit a conductivity of up to 32 kS m-1.

7.
ACS Nano ; 11(3): 3081-3088, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28285520

RESUMO

In situ and ex situ Raman measurements were used to study the dynamics of the populations of single-walled carbon nanotubes (SWCNTs) during their catalytic growth by chemical vapor deposition. Our study reveals that the nanotube diameter distribution strongly evolves during SWCNT growth but in dissimilar ways depending on the growth conditions. We notably show that high selectivity can be obtained using short or moderate growth times. High-resolution transmission electron microscopy observations support that Ostwald ripening is the key process driving these seemingly contradictory results by regulating the size distribution and lifetime of the active catalyst particles. Ostwald ripening appears as the main termination mechanism for the smallest diameter tubes, whereas carbon poisoning dominates for the largest ones. By unveiling the key concept of dynamic competition between nanotube growth and catalyst ripening, we show that time can be used as an active parameter to control the growth selectivity of carbon nanotubes and other 1D systems.

8.
Philos Trans A Math Phys Eng Sci ; 371(1988): 20120499, 2013 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-23459968

RESUMO

Liquid crystal ordering is an opportunity to develop novel materials and applications with spontaneously aligned nanotubes or graphene particles. Nevertheless, achieving high orientational order parameter and large monodomains remains a challenge. In addition, our restricted knowledge of the structure of the currently available materials is a limitation for fundamental studies and future applications. This paper presents recent methodologies that have been developed to achieve large monodomains of nematic liquid crystals. These allow quantification and increase of their order parameters. Nematic ordering provides an efficient way to prepare conductive films that exhibit anisotropic properties. In particular, it is shown how the electrical conductivity anisotropy increases with the order parameter of the nematic liquid crystal. The order parameter can be tuned by controlling the length and entanglement of the nanotubes. In the second part of the paper, recent results on graphene liquid crystals are reported. The possibility to obtain water-based liquid crystals stabilized by surfactant molecules is demonstrated. Structural and thermodynamic characterizations provide indirect but statistical information on the dimensions of the graphene flakes. From a general point of view, this work presents experimental approaches to optimize the use of nanocarbons as liquid crystals and provides new methodologies for the still challenging characterization of such materials.


Assuntos
Cristalização/métodos , Grafite/química , Cristais Líquidos/química , Modelos Químicos , Modelos Moleculares , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Simulação por Computador , Teste de Materiais , Tamanho da Partícula
9.
J Phys Chem Lett ; 3(17): 2425-30, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-26292127

RESUMO

Graphene oxide (GO) flakes dissolved in water can spontaneously form liquid crystals. Liquid crystallinity presents an opportunity to process graphene materials into macroscopic assemblies with long-range ordering, but most graphene electronic functionalities are lost in oxidation treatments. Reduction of GO allows recovering functionalities and makes reduced graphene oxide (RGO) of greater interest. Unfortunately, chemical reduction of GO generally results in the aggregation of the flakes, with no liquid crystallinity observed. We report in the present work liquid crystals made of RGO. The addition of surfactants in appropriate conditions is used to stabilize the RGO flakes against aggregation maintaining their ability to form water-based liquid crystals. Structural and thermodynamical studies allow the dimensions of the flakes to be deduced. It is found that the thickness and diameter of RGO flakes are close to that of neat GO flakes.

10.
ACS Nano ; 5(3): 2118-25, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21314174

RESUMO

Single-walled carbon nanotubes are grown by catalytic chemical vapor deposition in various conditions of temperature and carbon precursor pressure. Systematic analyses of the Raman radial breathing modes at two laser wavelengths are used to monitor the evolution of the diameter distribution. Two distinct domains with opposite influences of the temperature and the precursor pressure on the diameter distribution are evidenced. Thanks to specially designed experiments made of two successive growths, three processes are identified to influence the diameter distribution during the nanotube growth: (i) at too low precursor pressure, nanotube nucleation cannot occur on the smallest catalyst particles; (ii) at low temperature and high precursor pressure, small catalyst particles are preferably encapsulated by disordered carbon structures; (iii) at high temperature, catalyst coarsening causes the disappearance of the smallest catalyst particles.


Assuntos
Cristalização/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Catálise , Gases/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
11.
ACS Nano ; 5(12): 9892-7, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22092255

RESUMO

We present a resonance Raman study of electrochemical charge transfer doping on polyelectrolyte single-walled carbon nanotubes (SWNTs) in solution. Changes in the intensity of the radial breathing modes of well-identified SWNTs are measured as a function of the electrochemical potential. The intensity is maximum when the nanotubes are neutral. Unexpectedly, the Raman signal decreases as soon as charges are transferred to the nanotubes, leading to intensity profiles that are triangular for metallic and trapezoidal for semiconducting nanotubes. A key result is that the width in energy of the plateaus for the semiconducting nanotubes is roughly equal to the optical gap (rather than the free carrier gap). While these experiments can be used to estimate the energy levels of individual nanotubes, strong dynamical screening appears to dominate in individual SWNT polyelectrolytes so that only screened energy levels are being probed.


Assuntos
Cristalização/métodos , Galvanoplastia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Análise Espectral Raman/métodos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(6 Pt 1): 062701, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22304136

RESUMO

An assembly of packed and oriented rodlike particles exhibit anisotropic physical properties. We investigate in the present work the anisotropic conductivity of films made of intrinsically conducting rods. These films are obtained from more or less ordered carbon nanotube liquid crystals. Their orientational order parameter is measured by polarized Raman spectroscopy. A relationship between the anisotropy of surface conductivity and orientational order parameter is determined. The experimental results are accounted for by a model that takes into account the number of intertube contacts and density of conductive pathways in different directions, as introduced by J. Fischer et al. for magnetically aligned nanotubes. We find that a good agreement, without any fitting parameter, of the proposed model and experiments is obtained when we consider a two-dimensional (2D) Gaussian distribution of the nanotube orientation. The conductivities parallel and perpendicular to the nematic director differ by almost an order of magnitude. This anisotropy is much greater than that of conventional dielectric liquid crystals, where the behavior is governed by the mobility anisotropy of ionic current carriers. The present results do not depend on the intrinsic properties of the nanotubes and are expected to be relevant for other assemblies of conducting rodlike particles, such as metallic or semi-conducting nanowires and ribbons.

13.
Nano Lett ; 9(2): 542-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19159251

RESUMO

In situ Raman measurements were used to investigate the kinetics and the self-deactivation of the growth of single-walled carbon nanotubes during catalytic chemical vapor deposition. The kinetics appear controlled by the mass-transport of the gaseous precursor at low precursor pressure and high temperature and by the catalytic decomposition of the precursor at high precursor pressure and low temperature. The initial growth rate and the lifetime display inversely correlated evolutions with the growth parameters. In addition, we measured the activation energy for the healing of defects during the growth and discuss it in comparison to the apparent activation energies measured for the initial growth rate and the lifetime. Our results support that the healing of the edge defects controls both the crystalline order and the growth lifetime.

14.
Nano Lett ; 8(12): 4103-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19367925

RESUMO

Lyotropic nematic aqueous suspensions of single-wall carbon nanotubes can be uniformly aligned in thin cells by shearing. Homogeneous anisotropic thin films of nanotubes can be prepared by drying the nematic. Optical transmission between parallel or crossed polarizers is measured and described in order to estimate the dichroic ratio. The order parameter is measured using polarized Raman spectroscopy and found to be quite weak due to entanglement of the nanotubes and/or to an intrinsic viscoelastic behavior of the nanotube suspensions.

15.
J Am Chem Soc ; 127(1): 8-9, 2005 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-15631422

RESUMO

Upon reduction with alkali metals, single-wall carbon nanotubes (SWNTS) are shown to form polyelectrolyte salts that are soluble in polar organic solvents without any sonication, use of surfactants, or functionalization whatsoever, thus forming true thermodynamically stable solutions of naked SWNTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA