RESUMO
Tropical urbanized coastal regions are hotspots for the discharge of nutrient-enriched groundwater, which can affect sensitive coastal ecosystems. Here, we investigated how a beach modifies groundwater nutrient loads in southern India (Varkala Beach), using flux measurements and stable isotopes. Fresh groundwater was highly enriched in NO3 from sewage or manure. Submarine groundwater discharge and nearshore groundwater discharge were equally important contributors to coastal NO3 fluxes with 303 mmol NO3 m-1 day-1 in submarine and 334 mmol NO3 m-1 day-1 in nearshore groundwater discharge. However, N/P ratios in nearshore groundwater discharge were up to 3 orders of magnitude greater than that in submarine groundwater, which can promote harmful algae blooms. As groundwater flowed through the beach, N/P ratios decreased toward Redfield ratios due to the removal of 30-50% of NO3 due to denitrification and production of PO4 due to mineralization of organic matter. Overall, tropical beaches can be important natural biogeochemical reactors that attenuate nitrogen pollution and modify N/P ratios in submarine groundwater discharge.
Assuntos
Água Subterrânea , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Índia , Nitrogênio/análise , Oceanos e Mares , Poluentes Químicos da Água/análiseRESUMO
Eutrophication due to excessive nutrient inputs is a major threat to coastal ecosystems worldwide, causing harmful algae blooms, seagrass loss and hypoxia. Decisions to combat eutrophication in the North Sea were made in the 1980s. Despite significant improvements during recent decades, high nitrogen loads and resulting eutrophication problems remain. In this study, long-term changes in nitrogen inputs to the Elbe Estuary (Germany) were characterized based on nitrogen data provided by the Elbe River Basin Community from 1985 to 2019. Additionally, surface water samples were taken at the weir separating the river from the estuary from 2011 to 2021 to characterize dissolved inorganic nitrogen concentrations and nitrate stable isotope composition. The findings suggest a close coupling of river discharge with the riverine nitrogen cycle. Nitrogen loads decreased disproportionately with decreasing discharge. This decrease is due to intensified nitrogen retention in the Elbe catchment, which can double nitrogen retention compared to average discharge conditions. Phytoplankton growth was enhanced by long residence times and high light availability at low water levels. This suggests that the recent decreases in nitrogen loads in the Elbe River were not only a result of management measures in the catchment but were also amplified by a recent long-lasting drought in the catchment. Based on projections from the Intergovernmental Panel on Climate Change, more frequent and extensive droughts are anticipated, which may lead to future seasonal shifts to nitrate limitation in the lower Elbe River.