Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(3): 1436-1451, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33270368

RESUMO

Identifying which abiotic and biotic factors determine microbial community assembly is crucial to understand ecological processes and predict how communities will respond to environmental change. While global surveys aim at addressing this question in the world's oceans, equivalent studies in large freshwater systems are virtually lacking. Being the oldest, deepest and most voluminous freshwater lake on Earth, Lake Baikal offers a unique opportunity to test the effect of horizontal versus vertical gradients in community structure. Here, we characterized the structure of planktonic microbial eukaryotic communities (0.2-30 µm cell size) along a North-South latitudinal gradient (~600 km) from samples collected in coastal and pelagic waters and from surface to the deepest zones (5-1400 m) using an 18S rRNA gene metabarcoding approach. Our results show complex and diverse protist communities dominated by alveolates (ciliates and dinoflagellates), ochrophytes and holomycotan lineages, with cryptophytes, haptophytes, katablepharids and telonemids in moderate abundance and many low-frequency lineages, including several typical marine members, such as diplonemids, syndinians and radiolarians. Depth had a strong significant effect on protist community stratification. By contrast, the effect of the latitudinal gradient was marginal and no significant difference was observed between coastal and surface open water communities. Co-occurrence network analyses showed that epipelagic communities were significantly more interconnected than communities from the dark water column and suggest specific biotic interactions between autotrophic, heterotrophic and parasitic lineages that influence protist community structure. Since climate change is rapidly affecting Siberia and Lake Baikal, our comprehensive protist survey constitutes a useful reference to monitor ongoing community shifts.


Assuntos
Dinoflagellida , Microbiota , Plâncton , Lagos , Oceanos e Mares , Plâncton/genética
2.
J Eukaryot Microbiol ; 66(6): 911-924, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31077482

RESUMO

The aphelids (phylum Aphelida) are phagotrophic parasitoids of algae and represent the most basal branch in superphylum Opisthosporidia, which contains the Microsporidia, Rozellosporidia and Aphelida. Being the closest group to traditional fungi, the aphelids should have ancestral features of both phyla. As in chytrids and other zoosporic fungi, the structure of zoospores is the most informative and important morphological feature for the phylogeny and taxonomy of aphelids. Though a general zoospore description exists for some aphelid species, their flagellar apparatus (kinetid) structure, which contains pivotal taxonomic and phylogenetic characters, has not been studied. Here we represent the kinetid structure in two genera, Aphelidium and Paraphelidium, and demonstrate independent reduction in the kinetid in each genus. The kinetid-mitochondrion connection found in Aphelidium and Paraphelidium is rare for opisthokonts in general, but present in the most basal branches of Fungi and Opisthosporidia. We suggest, therefore, that this connection represents an ancestral character for both these phyla.


Assuntos
Evolução Biológica , Fungos/ultraestrutura , Fungos/classificação , Microscopia Eletrônica de Transmissão
3.
J Phycol ; 54(4): 571-576, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29676790

RESUMO

Recently radiated dinoflagellates Apocalathium aciculiferum (collected in Lake Erken, Sweden), Apocalathium malmogiense (Baltic Sea) and Apocalathium aff. malmogiense (Highway Lake, Antarctica) represent a lineage with an unresolved phylogeny. We determined their phylogenetic relationships using phylotranscriptomics based on 792 amino acid sequences. Our results showed that A. aciculiferum diverged from the other two closely related lineages, consistent with their different morphologies in cell size, relative cell length and presence of spines. We hypothesized that A. aff. malmogiense and A. malmogiense, which inhabit different hemispheres, are evolutionarily more closely related because they diverged from a marine common ancestor, adapting to a wide salinity range, while A. aciculiferum colonized a freshwater habitat, by acquiring adaptations to this environment, in particular, salinity intolerance. We show that phylotranscriptomics can resolve the phylogeny of recently diverged protists. This has broad relevance, given that many phytoplankton species are morphologically very similar, and single genes sometimes lack the information to determine species' relationships.


Assuntos
Dinoflagellida/classificação , Filogenia , Transcriptoma , Dinoflagellida/genética , RNA de Algas/análise , RNA de Protozoário/análise , RNA Ribossômico/análise
4.
Environ Toxicol Chem ; 42(5): 1124-1133, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36920033

RESUMO

Plastic nanoparticles (NPs) are the final state of plastic degradation in the environment before they disintegrate into low-molecular-weight organic compounds. Unicellular organisms are highly sensitive to the toxic effects of nanoplastics, because they are often capable of phagotrophy but are unable to consume a foreign material such as synthetic plastic. We studied the effect of polystyrene, poly(vinyl chloride), poly(methyl acrylate), and poly(methyl methacrylate) NPs on the photosynthetic dinoflagellate Gymnodinium corollarium Sundström, Kremp et Daugbjerg. Fluorescent tagged particles were used to visualize plastic capture by dinoflagellate cells. We found that these dinoflagellates are capable of phagotrophic nutrition and thus should be regarded as mixotrophic species. This causes their susceptibility to the toxic effects of plastic NPs. Living cells ingest plastic NPs and accumulate in the cytoplasm as micrometer-level aggregates, probably in food vacuoles. The action of nanoplastics leads to a dose-dependent increase in the level of reactive oxygen species in dinoflagellate cells, indicating plastic degradation in the cells. The introduction of a methyl group into the main chain in the α-position in the case of poly(methyl methacrylate) causes a drastic reduction in toxicity. We expect that such NPs can be a tool for testing unicellular organisms in terms of heterotrophic feeding ability. We suggest a dual role of dinoflagellates in the ecological fate of plastic waste: the involvement of nanoplastics in the food chain and its biochemical destruction. Environ Toxicol Chem 2023;42:1124-1133. © 2023 SETAC.


Assuntos
Dinoflagellida , Nanopartículas , Poluentes Químicos da Água , Microplásticos , Polimetil Metacrilato , Poluentes Químicos da Água/análise , Plásticos/toxicidade , Poliestirenos , Nanopartículas/metabolismo
5.
ISME J ; 15(11): 3412-3417, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34012102

RESUMO

Lake Baikal is the deepest (~1.6 km) and most voluminous freshwater reservoir on Earth. Compared to plankton, its benthos remains poorly explored. Here, we ask whether latitude and/or depth determine benthic microbial community structure and how Baikal communities compare to those of other freshwater, brackish and marine sediments. To answer, we collected sediment upper layers (0-1 cm) across a ~600 km North-South transect covering the three basins of the lake and from littoral to bathybenthic depths (0.5-1450 m). Analysis of 16S and 18S rRNA gene amplicon sequences revealed communities with high richness and evenness where rare operational taxonomic units (OTUs) collectively dominated. Archaea represented up to 25% or prokaryotic sequences. Baikal sediments harbored typically marine eukaryotic and prokaryotic OTUs recently identified in some lakes (diplonemids, Bolidophyceae, Mamiellales, SAR202, marine-like Synechococcus, Pelagibacterales) but also SAR324, Syndiniales and Radiolaria. We hypothesize that, beyond the salinity barrier, adaptation to oligotrophy explains the presence of these otherwise typically marine lineages. Baikal core benthic communities were relatively stable across sites and seemed not determined by depth or latitude. Comparative analyses with other freshwater, brackish and marine prokaryotic sediment communities confirmed the distinctness of Baikal benthos, which include elements of similarity to marine and hydrothermally influenced systems.


Assuntos
Dinoflagellida , Microbiota , Archaea/genética , Sedimentos Geológicos , Lagos , Filogenia , RNA Ribossômico 16S/genética
6.
Microorganisms ; 8(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283732

RESUMO

Ancient lakes are among the most interesting models for evolution studies because their biodiversity is the result of a complex combination of migration and speciation. Here, we investigate the origin of single celled planktonic eukaryotes from the oldest lake in the world-Lake Baikal (Russia). By using 18S rDNA metabarcoding, we recovered 1414 Operational Taxonomic Units (OTUs) belonging to protists populating surface waters (1-50 m) and representing pico/nano-sized cells. The recovered communities resembled other lacustrine freshwater assemblages found elsewhere, especially the taxonomically unclassified protists. However, our results suggest that a fraction of Baikal protists could belong to glacial relicts and have close relationships with marine/brackish species. Moreover, our results suggest that rapid radiation may have occurred among some protist taxa, partially mirroring what was already shown for multicellular organisms in Lake Baikal. We found 16% of the OTUs belonging to potential species flocks in Stramenopiles, Alveolata, Opisthokonta, Archaeplastida, Rhizaria, and Hacrobia. Putative flocks predominated in Chrysophytes, which are highly diverse in Lake Baikal. Also, the 18S rDNA of a number of species (7% of the total) differed >10% from other known sequences. These taxa as well as those belonging to the flocks may be endemic to Lake Baikal. Overall, our study points to novel diversity of planktonic protists in Lake Baikal, some of which may have emerged in situ after evolutionary diversification.

7.
ISME J ; 9(8): 1821-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25603395

RESUMO

Processes of rapid radiation among unicellular eukaryotes are much less studied than among multicellular organisms. We have investigated a lineage of cold-water microeukaryotes (protists) that appear to have diverged recently. This lineage stands in stark contrast to known examples of phylogenetically closely related protists, in which genetic difference is typically larger than morphological differences. We found that the group not only consists of the marine-brackish dinoflagellate species Scrippsiella hangoei and the freshwater species Peridinium aciculiferum as discovered previously but also of a whole species flock. The additional species include Peridinium euryceps and Peridinium baicalense, which are restricted to a few lakes, in particular to the ancient Lake Baikal, Russia, and freshwater S. hangoei from Lake Baikal. These species are characterized by relatively large conspicuous morphological differences, which have given rise to the different species descriptions. However, our scanning electron microscopic studies indicate that they belong to a single genus according to traditional morphological characterization of dinoflagellates (thecal plate patterns). Moreover, we found that they have identical SSU (small subunit) rDNA fragments and distinct but very small differences in the DNA markers LSU (large subunit) rDNA, ITS2 (internal transcribed spacer 2) and COB (cytochrome b) gene, which are used to delineate dinoflagellates species. As some of the species co-occur, and all four have small but species-specific sequence differences, we suggest that these taxa are not a case of phenotypic plasticity but originated via recent adaptive radiation. We propose that this is the first clear example among free-living microeukaryotes of recent rapid diversification into several species followed by dispersion to environments with different ecological conditions.


Assuntos
Dinoflagellida/isolamento & purificação , Lagos/parasitologia , Água do Mar/parasitologia , DNA de Protozoário/análise , DNA Ribossômico/genética , Dinoflagellida/genética , Filogenia , Federação Russa , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA