Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Brain ; 145(12): 4349-4367, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36074904

RESUMO

Parkinson's disease is a common incurable neurodegenerative disease. The identification of genetic variants via genome-wide association studies has considerably advanced our understanding of the Parkinson's disease genetic risk. Understanding the functional significance of the risk loci is now a critical step towards translating these genetic advances into an enhanced biological understanding of the disease. Impaired mitophagy is a key causative pathway in familial Parkinson's disease, but its relevance to idiopathic Parkinson's disease is unclear. We used a mitophagy screening assay to evaluate the functional significance of risk genes identified through genome-wide association studies. We identified two new regulators of PINK1-dependent mitophagy initiation, KAT8 and KANSL1, previously shown to modulate lysine acetylation. These findings suggest PINK1-mitophagy is a contributing factor to idiopathic Parkinson's disease. KANSL1 is located on chromosome 17q21 where the risk associated gene has long been considered to be MAPT. While our data do not exclude a possible association between the MAPT gene and Parkinson's disease, they provide strong evidence that KANSL1 plays a crucial role in the disease. Finally, these results enrich our understanding of physiological events regulating mitophagy and establish a novel pathway for drug targeting in neurodegeneration.


Assuntos
Mitofagia , Doença de Parkinson , Humanos , Estudo de Associação Genômica Ampla , Mitofagia/fisiologia , Doenças Neurodegenerativas , Doença de Parkinson/metabolismo , Proteínas Quinases/genética , Proteínas tau/genética
2.
Mol Cell Neurosci ; 103: 103463, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31917333

RESUMO

Endocannabinoids regulate different aspects of neurodevelopment. In utero exposure to the exogenous psychoactive cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC), has been linked with abnormal cortical development in animal models. However, much less is known about the actions of endocannabinoids in human neurons. Here we investigated the effect of the endocannabinoid 2-arachidonoyl glycerol (2AG) and Δ9-THC on the development of neuronal morphology and activation of signaling kinases, in cortical neurons derived from human induced pluripotent stem cells (hiPSCs). Our data indicate that the cannabinoid type 1 receptor (CB1R), but not the cannabinoid 2 receptor (CB2R), GPR55 or TRPV1 receptors, is expressed in young, immature hiPSC-derived cortical neurons. Consistent with previous reports, 2AG and Δ9-THC negatively regulated neurite outgrowth. Interestingly, acute exposure to both 2AG and Δ9-THC inhibited phosphorylation of serine/threonine kinase extracellular signal-regulated protein kinases (ERK1/2), whereas Δ9-THC also reduced phosphorylation of Akt (aka PKB). Moreover, the CB1R inverse agonist SR 141716A attenuated the decrease in neurite outgrowth and ERK1/2 phosphorylation induced by 2AG and Δ9-THC. Taken together, our data suggest that hiPSC-derived cortical neurons express CB1Rs and are responsive to exogenous cannabinoids. Thus, hiPSC-neurons may represent a good cellular model for investigating the role of the endocannabinoid system in regulating cellular processes in developing human neurons.


Assuntos
Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Rimonabanto/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Dronabinol/metabolismo , Dronabinol/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Aging Cell ; : e14250, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881280

RESUMO

Mitochondria are dynamic bioenergetic hubs that become compromised with age. In neurons, declining mitochondrial axonal transport has been associated with reduced cellular health. However, it is still unclear to what extent the decline of mitochondrial transport and function observed during ageing are coupled, and if somal and axonal mitochondria display compartment-specific features that make them more susceptible to the ageing process. It is also not known whether the biophysical state of the cytoplasm, thought to affect many cellular functions, changes with age to impact mitochondrial trafficking and homeostasis. Focusing on the mouse peripheral nervous system, we show that age-dependent decline in mitochondrial trafficking is accompanied by reduction of mitochondrial membrane potential and intramitochondrial viscosity, but not calcium buffering, in both somal and axonal mitochondria. Intriguingly, we observe a specific increase in cytoplasmic viscosity in the neuronal cell body, where mitochondria are most polarised, which correlates with decreased cytoplasmic diffusiveness. Increasing cytoplasmic crowding in the somatic compartment of DRG neurons grown in microfluidic chambers reduces mitochondrial axonal trafficking, suggesting a mechanistic link between the regulation of cytoplasmic viscosity and mitochondrial dynamics. Our work provides a reference for studying the relationship between neuronal mitochondrial homeostasis and the viscoelasticity of the cytoplasm in a compartment-dependent manner during ageing.

4.
Methods Mol Biol ; 2431: 291-310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412283

RESUMO

Mitochondria are highly dynamic organelles which form intricate networks with complex dynamics. Mitochondrial transport and distribution are essential to ensure proper cell function, especially in cells with an extremely polarised morphology such as neurons. A layer of complexity is added when considering mitochondria have their own genome, packaged into nucleoids. Major mitochondrial morphological transitions, for example mitochondrial division, often occur in conjunction with mitochondrial DNA (mtDNA) replication and changes in the dynamic behaviour of the nucleoids. However, the relationship between mtDNA dynamics and mitochondrial motility in the processes of neurons has been largely overlooked. In this chapter, we describe a method for live imaging of mitochondria and nucleoids in differentiated SH-SY5Y cells by instant structured illumination microscopy (iSIM). We also include a detailed protocol for the differentiation of SH-SY5Y cells into cells with a pronounced neuronal-like morphology and show examples of coordinated mitochondrial and nucleoid motility in the long processes of these cells.


Assuntos
Mitocôndrias , Dinâmica Mitocondrial , Linhagem Celular Tumoral/citologia , DNA Mitocondrial , Humanos , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética
5.
Autophagy ; 15(11): 2002-2011, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31060423

RESUMO

Mitochondrial quality control is essential for maintaining a healthy population of mitochondria. Two proteins associated with Parkinson disease, the kinase PINK1 and the E3 ubiquitin ligase PRKN, play a central role in the selective degradation of heavily damaged mitochondria (mitophagy), thus avoiding their toxic accumulation. Most of the knowledge on PINK1-PRKN mitophagy comes from in vitro experiments involving the treatment of mammalian cells with high concentrations of mitochondrial uncouplers, such as CCCP. These chemicals have been shown to mediate off target effects, other than mitochondrial depolarization. A matter of controversy between mitochondrial physiologists and cell biologists is the discrepancy between concentrations of CCCP needed to activate mitophagy (usually >10 µM), when compared to the much lower concentrations used to depolarize mitochondria (<1 µM). Thus, there is an urgent need for optimizing the current methods to assess PINK1-PRKN mitophagy in vitro. In this study, we address the utilization of high CCCP concentrations commonly used to activate mitophagy. Combining live fluorescence microscopy and biochemistry, we show that the FBS/BSA in the cell culture medium reduces the ability of CCCP to induce PINK1 accumulation at depolarized mitochondria, subsequent PRKN recruitment and ubiquitin phosphorylation, and ultimately mitochondrial clearance. As a result, high concentrations of CCCP are required to induce mitophagy in FBS/BSA containing media. These data unite mitochondrial physiology and mitophagy studies and are a first step toward a consensus on optimal experimental conditions for PINK1-PRKN mitophagy and mitochondrial physiology investigations to be carried out in parallel. Abbreviations: BSA: bovine serum albumin; CCCP: carbonyl cyanide m-chlorophenylhydrazone; DMEM: dulbecco's Modified Eagle's Medium; DNP: 2,4-dinitrophenol; FBS: fetal bovine serum; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; GSH: glutathione; HBSS: Hanks' balanced salt solution; mtKeima: mitochondria-targeted monomeric keima-red; PBS: phosphate buffered saline; PD: Parkinson disease; PINK1: PTEN induced kinase 1; POE SHSY5Ys: FLAG-PRKN over-expressing SHSY5Y cells; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; TMRM: tetramethylrhodamine methyl ester; WB: western blot; WT: wild-type; ΔΨm: mitochondrial membrane potential.


Assuntos
Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Mitocôndrias/metabolismo , Mitofagia/genética , Proteínas Quinases/metabolismo , Soroalbumina Bovina/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Meios de Cultura , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/genética , Lisossomos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Mitofagia/efeitos dos fármacos , Proteínas Quinases/genética , Soro/química , Soro/metabolismo , Ubiquitina-Proteína Ligases/genética
6.
Sci Rep ; 8(1): 8855, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891871

RESUMO

The discovery of mutations within genes associated with autosomal recessive Parkinson's disease allowed for the identification of PINK1/Parkin regulated mitophagy as an important pathway for the removal of damaged mitochondria. While recent studies suggest that AKT-dependent signalling regulates Parkin recruitment to depolarised mitochondria, little is known as to whether this can also regulate PINK1 mitochondrial accumulation and downstream mitophagy. Here, we demonstrate that inhibition of AKT signalling decreases endogenous PINK1 accumulation in response to mitochondria depolarisation, subsequent Parkin recruitment, phosphorylation of ubiquitin, and ultimately mitophagy. Conversely, we show that upon stimulation of AKT signalling via insulin, the mitophagy pathway is increased in SHSY5Y cells. These data suggest that AKT signalling is an upstream regulator of PINK1 accumulation on damaged mitochondria. Importantly, we show that the AKT pathway also regulates endogenous PINK1-dependent mitophagy in human iPSC-derived neurons.


Assuntos
Mitocôndrias/metabolismo , Mitofagia , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Linhagem Celular Tumoral , Humanos , Células-Tronco Pluripotentes Induzidas , Neurônios/citologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA