Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(11): e2214556120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36888664

RESUMO

Computationally designed protein nanoparticles have recently emerged as a promising platform for the development of new vaccines and biologics. For many applications, secretion of designed nanoparticles from eukaryotic cells would be advantageous, but in practice, they often secrete poorly. Here we show that designed hydrophobic interfaces that drive nanoparticle assembly are often predicted to form cryptic transmembrane domains, suggesting that interaction with the membrane insertion machinery could limit efficient secretion. We develop a general computational protocol, the Degreaser, to design away cryptic transmembrane domains without sacrificing protein stability. The retroactive application of the Degreaser to previously designed nanoparticle components and nanoparticles considerably improves secretion, and modular integration of the Degreaser into design pipelines results in new nanoparticles that secrete as robustly as naturally occurring protein assemblies. Both the Degreaser protocol and the nanoparticles we describe may be broadly useful in biotechnological applications.


Assuntos
Nanopartículas , Vacinas , Proteínas , Nanopartículas/química
2.
PLoS Pathog ; 19(10): e1011601, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37903160

RESUMO

Neutralizing antibodies (NAbs) to multiple epitopes on the HIV-1-envelope glycoprotein (Env) have been isolated from infected persons. The potency of NAbs is measured more often than the size of the persistent fraction of infectivity at maximum neutralization, which may also influence preventive efficacy of active or passive immunization and the therapeutic outcome of the latter. Many NAbs neutralize HIV-1 CZA97.012, a clone of a Clade-C isolate, to ~100%. But here NAb PGT151, directed to a fusion-peptide epitope, left a persistent fraction of 15%. NAb PGT145, ligating the Env-trimer apex, left no detectable persistent fraction. The divergence in persistent fractions was further analyzed by depletion of pseudoviral populations of the most PGT151- and PGT145-reactive virions. Thereby, neutralization by the non-depleting NAb increased, whereas neutralization by the depleting NAb decreased. Furthermore, depletion by PGT151 increased sensitivity to autologous neutralization by sera from rabbits immunized with soluble native-like CZA97.012 trimer: substantial persistent fractions were reduced. NAbs in these sera target epitopes comprising residue D411 at the V4-ß19 transition in a defect of the glycan shield on CZA97.012 Env. NAb binding to affinity-fractionated soluble native-like CZA97.012 trimer differed commensurately with neutralization in analyses by ELISA and surface plasmon resonance. Glycan differences between PGT151- and PGT145-purified trimer fractions were then demonstrated by mass spectrometry, providing one explanation for the differential antigenicity. These differences were interpreted in relation to a new structure at 3.4-Å resolution of the soluble CZA97.012 trimer determined by cryo-electron microscopy. The trimer adopted a closed conformation, refuting apex opening as the cause of reduced PGT145 binding to the PGT151-purified form. The evidence suggests that differences in binding and neutralization after trimer purification or pseudovirus depletion with PGT145 or PGT151 are caused by variation in glycosylation, and that some glycan variants affect antigenicity through direct effects on antibody contacts, whereas others act allosterically.


Assuntos
Infecções por HIV , HIV-1 , Animais , Coelhos , Anticorpos Anti-HIV , Microscopia Crioeletrônica , Anticorpos Neutralizantes , Epitopos , Antígenos Virais , Polissacarídeos/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana
3.
Environ Sci Technol ; 58(12): 5279-5289, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38488515

RESUMO

The sensitivity of enteroviruses to disinfectants varies among genetically similar variants and coincides with amino acid changes in capsid proteins, although the effect of individual substitutions remains unknown. Here, we employed reverse genetics to investigate how amino acid substitutions in coxsackievirus B5 (CVB5) capsid proteins affect the virus' sensitivity to free chlorine and heat treatment. Of ten amino acid changes observed in CVB5 variants with free chlorine resistance, none significantly reduced the chlorine sensitivity, indicating a minor role of the capsid composition in chlorine sensitivity of CVB5. Conversely, a subset of these amino acid changes located at the C-terminal region of viral protein 1 led to reduced heat sensitivity. Cryo-electron microscopy revealed that these changes affect the assembly of intermediate viral states (altered and empty particles), suggesting that the mechanism for reduced heat sensitivity could be related to improved molecular packing of CVB5, resulting in greater stability or altered dynamics of virus uncoating during infection.


Assuntos
Proteínas do Capsídeo , Cloro , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Cloro/farmacologia , Microscopia Crioeletrônica , Substituição de Aminoácidos , Enterovirus Humano B/genética , Aminoácidos
4.
PLoS Pathog ; 16(8): e1008665, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32780770

RESUMO

Two-component, self-assembling nanoparticles represent a versatile platform for multivalent presentation of viral antigens. Computational design of protein nanoparticles with differing sizes and geometries enables combination with antigens of choice to test novel multimerization concepts in immunization strategies where the goal is to improve the induction and maturation of neutralizing antibody lineages. Here, we describe detailed antigenic, structural, and functional characterization of computationally designed tetrahedral, octahedral, and icosahedral nanoparticle immunogens displaying trimeric HIV envelope glycoprotein (Env) ectodomains. Env trimers, based on subtype A (BG505) or consensus group M (ConM) sequences and engineered with SOSIP stabilizing mutations, were fused to an underlying trimeric building block of each nanoparticle. Initial screening yielded one icosahedral and two tetrahedral nanoparticle candidates, capable of presenting twenty or four copies of the Env trimer. A number of analyses, including detailed structural characterization by cryo-EM, demonstrated that the nanoparticle immunogens possessed the intended structural and antigenic properties. When the immunogenicity of ConM-SOSIP trimers presented on a two-component tetrahedral nanoparticle or as soluble proteins were compared in rabbits, the two immunogens elicited similar serum antibody binding titers against the trimer component. Neutralizing antibody titers were slightly elevated in the animals given the nanoparticle immunogen and were initially more focused to the trimer apex. Altogether, our findings indicate that tetrahedral nanoparticles can be successfully applied for presentation of HIV Env trimer immunogens; however, the optimal implementation to different immunization strategies remains to be determined.


Assuntos
Anticorpos Anti-HIV/imunologia , Antígenos HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Nanopartículas/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Epitopos/imunologia , Feminino , Infecções por HIV/virologia , Humanos , Imunização , Nanopartículas/administração & dosagem , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
5.
J Struct Biol ; 209(1): 107412, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689502

RESUMO

Hemagglutnin (HA) mediates entry of influenza virus through a series of conformational changes triggered by the low pH of the endosome. The residue or combination of residues acting as pH sensors has not yet been fully elucidated. In this work, we assay pH effects on the structure of H5 HA by soaking HA crystallized at pH 6.5 in a series of buffers with lower pH, mimicking the conditions of the endosome. We find that HA1-H38, which is conserved in Group 1 HA, undergoes a striking change in side chain conformation, which we attribute to its protonation and cation-cation repulsion with conserved HA1-H18. This work suggests that x-ray crystallography can be applied for studying small-scale pH-induced conformational changes providing valuable information on the location of pH sensors in HA. Importantly, the observed change in HA1-H38 conformation is further evidence that the pH-induced conformational changes of HA are the result of a series of protonation events to conserved and non-conserved pH sensors.


Assuntos
Hemaglutininas/ultraestrutura , Influenza Humana/genética , Orthomyxoviridae/ultraestrutura , Internalização do Vírus , Cristalografia por Raios X , Endossomos/genética , Endossomos/ultraestrutura , Hemaglutininas/química , Hemaglutininas/genética , Humanos , Concentração de Íons de Hidrogênio , Influenza Humana/patologia , Influenza Humana/virologia , Modelos Moleculares , Orthomyxoviridae/genética , Conformação Proteica
6.
J Biol Chem ; 292(52): 21590-21597, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29127198

RESUMO

Viral entry into host cells is mediated by membrane proteins in a metastable state that transition to a more stable state upon a stimulus. For example, in the influenza envelope protein hemagglutinin (HA), the low pH in the endosome triggers a transition from the metastable prefusion conformation to the stable fusion conformation. To identify probes that interfere with HA function, here we screened a library of H7 HA peptides for inhibition of H7 HA-mediated entry. We discovered a peptide, PEP87 (WSYNAELLVAMENQHTI), that inhibited H7 and H5 HA-mediated entry. PEP87 corresponds to a highly conserved helical region of the HA2 subunit of HA that self-interacts in the neutral pH conformation. Mutagenesis experiments indicated that PEP87 binds to its native region in the HA trimer. We also found that PEP87 is unstructured in isolation but tends to form a helix as evidenced by CD and NMR studies. Fluorescence, chemical cross-linking, and saturation transfer difference NMR data suggested that PEP87 binds to the neutral pH conformation of HA and disrupts the HA structure without affecting its oligomerization state. Together, this work provides support for a model in which PEP87 disrupts HA function by displacing native interactions of the neutral pH conformation. Moreover, our observations indicate that the HA prefusion structure (and perhaps the metastable states of other viral entry proteins) is more dynamic with transient motions being larger than generally appreciated. These findings also suggest that the ensemble of prefusion structures presents many potential sites for targeting in therapeutic interventions.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X/métodos , Hemaglutininas/química , Humanos , Concentração de Íons de Hidrogênio , Influenza Humana/metabolismo , Fusão de Membrana/fisiologia , Modelos Moleculares , Mutagênese , Peptídeos/metabolismo , Conformação Proteica , Internalização do Vírus
7.
J Biol Chem ; 290(27): 16595-606, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26023235

RESUMO

The molecular seal between epithelial cells, called the tight junction (TJ), is built by several membrane proteins, with claudins playing the most prominent role. The scaffold proteins of the zonula occludens family are required for the correct localization of claudins and hence formation of the TJ. The intracellular C terminus of claudins binds to the N-terminal PDZ domain of zonula occludens proteins (PDZ1). Of the 23 identified human claudin proteins, nine possess a tyrosine at the -6 position. Here we show that the claudin affinity for PDZ1 is dependent on the presence or absence of this tyrosine and that the affinity is reduced if the tyrosine is modified by phosphorylation. The PDZ1 ß2-ß3 loop undergoes a significant conformational change to accommodate this tyrosine. Cell culture experiments support a regulatory role for this tyrosine. Plasticity has been recognized as a critical property of TJs that allow cell remodeling and migration. Our work provides a molecular framework for how TJ plasticity may be regulated.


Assuntos
Claudina-1/metabolismo , Claudina-2/metabolismo , Proteína da Zônula de Oclusão-1/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Claudina-1/química , Claudina-1/genética , Claudina-2/química , Claudina-2/genética , Humanos , Dados de Sequência Molecular , Domínios PDZ , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Junções Íntimas/química , Junções Íntimas/genética , Junções Íntimas/metabolismo , Tirosina/química , Tirosina/genética , Tirosina/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
8.
J Biomol NMR ; 64(3): 255-65, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26921030

RESUMO

The membrane proteins of viruses play critical roles in the virus life cycle and are attractive targets for therapeutic intervention. Virus-like particles (VLP) present the possibility to study the biochemical and biophysical properties of viral membrane proteins in their native environment. Specifically, the VLP constructs contain the entire protein sequence and are comprised of native membrane components including lipids, cholesterol, carbohydrates and cellular proteins. In this study we prepare VLP containing full-length hemagglutinin (HA) or neuraminidase (NA) from influenza and characterize their interactions with small molecule inhibitors. Using HA-VLP, we first show that VLP samples prepared using the standard sucrose gradient purification scheme contain significant amounts of serum proteins, which exhibit high potential for non-specific interactions, thereby complicating NMR studies of ligand-target interactions. We then show that the serum contaminants may be largely removed with the addition of a gel filtration chromatography step. Next, using HA-VLP we demonstrate that WaterLOGSY NMR is significantly more sensitive than Saturation Transfer Difference (STD) NMR for the study of ligand interactions with membrane bound targets. In addition, we compare the ligand orientation to HA embedded in VLP with that of recombinant HA by STD NMR. In a subsequent step, using NA-VLP we characterize the kinetic and binding properties of substrate analogs and inhibitors of NA, including study of the H274Y-NA mutant, which leads to wide spread resistance to current influenza antivirals. In summary, our work suggests that VLP have high potential to become standard tools in biochemical and biophysical studies of viral membrane proteins, particularly when VLP are highly purified and combined with control VLP containing native membrane proteins.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas da Matriz Viral/química , Linhagem Celular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Cinética , Proteínas Mutantes , Neuraminidase/química , Neuraminidase/metabolismo , Ligação Proteica , Proteínas da Matriz Viral/metabolismo
9.
J Biol Chem ; 289(32): 22237-45, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24947513

RESUMO

Influenza outbreaks, particularly the pandemic 1918 H1 and avian H5 strains, are of high concern to public health. The hemagglutinin envelope protein of influenza plays a critical role in viral entry and thus is an attractive target for inhibition of virus entry. The highly conserved stem loop region of hemagglutinin has been shown to undergo critically important conformational changes during the entry process and, moreover, to be a site for inhibition of virus entry by antibodies, small proteins, and small drug-like molecules. In this work we probe the structure-function properties of the H5 hemagglutinin stem loop region by site-directed mutagenesis. We find that most mutations do not disrupt expression, proteolytic processing, incorporation into virus, or receptor binding; however, many of the mutations disrupt the entry process. We further assess the effects of mutations on inhibition of entry by a neutralizing monoclonal antibody (C179) and find examples of increased and decreased sensitivity to the antibody, consistent with the antibody binding site observed by x-ray crystallography. In addition, we tested the sensitivity of the mutants to MBX2329, a small molecule inhibitor of influenza entry. Interestingly, the mutants exhibit increased and decreased sensitivities to MBX2329, which gives further insight into the binding site of the compound on HA and potential mechanisms of escape. Finally, we have modeled the binding site of MBX2329 using molecular dynamics and find that the resulting structure is in good agreement with the mutagenesis results. Together these studies underscore the importance of the stem loop region to HA function and suggest potential sites for therapeutic intervention of influenza entry.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Cristalografia por Raios X , Glicoproteínas de Hemaglutininação de Vírus da Influenza/fisiologia , Humanos , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Internalização do Vírus/efeitos dos fármacos
10.
J Virol ; 88(3): 1447-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24198411

RESUMO

Influenza viruses are a major public health threat worldwide, and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The influenza virus glycoprotein hemagglutinin (HA) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-influenza drugs. Using pseudotype virus-based high-throughput screens, we have identified several new small molecules capable of inhibiting influenza virus entry. We prioritized two novel inhibitors, MBX2329 and MBX2546, with aminoalkyl phenol ether and sulfonamide scaffolds, respectively, that specifically inhibit HA-mediated viral entry. The two compounds (i) are potent (50% inhibitory concentration [IC50] of 0.3 to 5.9 µM); (ii) are selective (50% cytotoxicity concentration [CC(50)] of >100 µM), with selectivity index (SI) values of >20 to 200 for different influenza virus strains; (iii) inhibit a wide spectrum of influenza A viruses, which includes the 2009 pandemic influenza virus A/H1N1/2009, highly pathogenic avian influenza (HPAI) virus A/H5N1, and oseltamivir-resistant A/H1N1 strains; (iv) exhibit large volumes of synergy with oseltamivir (36 and 331 µM(2) % at 95% confidence); and (v) have chemically tractable structures. Mechanism-of-action studies suggest that both MBX2329 and MBX2546 bind to HA in a nonoverlapping manner. Additional results from HA-mediated hemolysis of chicken red blood cells (cRBCs), competition assays with monoclonal antibody (MAb) C179, and mutational analysis suggest that the compounds bind in the stem region of the HA trimer and inhibit HA-mediated fusion. Therefore, MBX2329 and MBX2546 represent new starting points for chemical optimization and have the potential to provide valuable future therapeutic options and research tools to study the HA-mediated entry process.


Assuntos
Antivirais/farmacologia , Hemaglutininas Virais/metabolismo , Vírus da Influenza A/efeitos dos fármacos , Influenza Aviária/virologia , Influenza Humana/virologia , Doenças das Aves Domésticas/virologia , Bibliotecas de Moléculas Pequenas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/química , Linhagem Celular , Galinhas , Hemaglutininas Virais/genética , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/fisiologia , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Bibliotecas de Moléculas Pequenas/química
11.
Biochemistry ; 53(5): 872-80, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24437575

RESUMO

A component of the shikimate biosynthetic pathway, dehydroquinate dehydratase (DHQD) catalyzes the dehydration of 3-dehydroquniate (DHQ) to 3-dehydroshikimate. In the type I DHQD reaction mechanism a lysine forms a Schiff base intermediate with DHQ. The Schiff base acts as an electron sink to facilitate the catalytic dehydration. To address the mechanism of Schiff base formation, we determined structures of the Salmonella enterica wild-type DHQD in complex with the substrate analogue quinate and the product analogue shikimate. In addition, we determined the structure of the K170M mutant (Lys170 being the Schiff base forming residue) in complex with quinate. Combined with nuclear magnetic resonance and isothermal titration calorimetry data that revealed altered binding of the analogue to the K170M mutant, these structures suggest a model of Schiff base formation characterized by the dynamic interplay of opposing forces acting on either side of the substrate. On the side distant from the substrate 3-carbonyl group, closure of the enzyme's ß8-α8 loop is proposed to guide DHQ into the proximity of the Schiff base-forming Lys170. On the 3-carbonyl side of the substrate, Lys170 sterically alters the position of DHQ's reactive ketone, aligning it at an angle conducive for nucleophilic attack. This study of a type I DHQD reveals the interplay between the enzyme and substrate required for the correct orientation of a functional group constrained within a cyclic substrate.


Assuntos
Proteínas de Bactérias/química , Hidroliases/química , Ácido Quínico/química , Salmonella enterica/enzimologia , Bases de Schiff/química , Ácido Chiquímico/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Hidroliases/genética , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica
12.
J Biomol NMR ; 60(1): 37-44, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25015532

RESUMO

The WaterLOGSY (WL) and saturation transfer difference (STD) NMR experiments have proven to be extremely useful techniques to characterize interactions between small molecules and large biomolecules. In this work we compare the relative sensitivities of WL and STD NMR using 3 experimental systems: ketoprofen (KET)-bovine serum albumin (BSA), tert-butyl hydroquinone (TBHQ)-hemagglutinin (HA), and chloramphenicol (CAM)-ribosome (70S). In all cases we find that WL is more sensitive than STD for a given experimental time with the ratios ranging from 3.2 for KET-BSA to 16 for TBHQ-HA and CAM-70S. We attribute the increased sensitivity of WL to be due to simultaneous saturation of multiple sources of cross correlation, including direct NOEs of 1H of water and exchangeable groups and indirect NOEs of 1H-C groups. We suggest that the outstanding sensitivity of WL make it ideally suited for drug screening efforts targeting very large biomolecules at relatively low concentrations.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Ligantes , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Ligação Proteica , Proteínas/química , Proteínas/metabolismo
13.
bioRxiv ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38559180

RESUMO

Vaccination strategies against HIV-1 aim to elicit broadly neutralizing antibodies (bnAbs) using prime-boost regimens with HIV envelope (Env) immunogens. Early antibody responses to easily accessible epitopes on these antigens are directed to non-neutralizing epitopes instead of bnAb epitopes. Autologous neutralizing antibody responses appear upon boosting once immunodominant epitopes are saturated. Here we report another type of antibody response that arises after repeated immunizations with HIV Env immunogens and present the structures of six anti-immune complexes discovered using polyclonal epitope mapping. The anti-immune complex antibodies target idiotopes composed of framework regions of antibodies bound to Env. This work sheds light on current vaccine development efforts for HIV, as well as for other pathogens, in which repeated exposure to antigen is required.

14.
NPJ Vaccines ; 9(1): 126, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997302

RESUMO

Immunodominance of antibodies targeting non-neutralizing epitopes and the high level of somatic hypermutation within germinal centers (GCs) required for most HIV broadly neutralizing antibodies (bnAbs) are major impediments to the development of an effective HIV vaccine. Rational protein vaccine design and non-conventional immunization strategies are potential avenues to overcome these hurdles. Here, we report using implantable osmotic pumps to continuously deliver a series of epitope-targeted immunogens to rhesus macaques over the course of six months to prime and elicit antibody responses against the conserved fusion peptide (FP). GC responses and antibody specificities were tracked longitudinally using lymph node fine-needle aspirates and electron microscopy polyclonal epitope mapping (EMPEM), respectively, to show antibody responses to the FP/N611 glycan hole region were primed, although exhibited limited neutralization breadth. Application of cryoEMPEM delineated key residues for on-target and off-target responses that can drive the next round of structure-based vaccine design.

15.
STAR Protoc ; 4(3): 102476, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37516970

RESUMO

Electron microscopy-based polyclonal epitope mapping (EMPEM) can delineate epitope specificities of serum antibodies to a given antigen following vaccination or infection. Here, we present a protocol for the EMPEM method for rapid high-throughput assessment of antibody responses to glycoprotein antigens in vaccination and infection studies. We describe steps for antibody isolation and digestion, antigen complex and purification, and electron microscope imaging. We then detail procedures for processing and analysis of EMPEM data. For complete details on the use and execution of this protocol, please refer to Bianchi et al. (2018).1.


Assuntos
Formação de Anticorpos , Elétrons , Mapeamento de Epitopos , Microscopia Eletrônica , Anticorpos , Glicoproteínas
16.
Nat Commun ; 14(1): 1985, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031217

RESUMO

Uncleaved prefusion-optimized (UFO) design can stabilize diverse HIV-1 envelope glycoproteins (Envs). Single-component, self-assembling protein nanoparticles (1c-SApNP) can display 8 or 20 native-like Env trimers as vaccine candidates. We characterize the biophysical, structural, and antigenic properties of 1c-SApNPs that present the BG505 UFO trimer with wildtype and modified glycans. For 1c-SApNPs, glycan trimming improves recognition of the CD4 binding site without affecting broadly neutralizing antibodies (bNAbs) to major glycan epitopes. In mice, rabbits, and nonhuman primates, glycan trimming increases the frequency of vaccine responders (FVR) and steers antibody responses away from immunodominant glycan holes and glycan patches. The mechanism of vaccine-induced immunity is examined in mice. Compared with the UFO trimer, the multilayered E2p and I3-01v9 1c-SApNPs show 420 times longer retention in lymph node follicles, 20-32 times greater presentation on follicular dendritic cell dendrites, and up-to-4 times stronger germinal center reactions. These findings can inform future HIV-1 vaccine development.


Assuntos
Infecções por HIV , HIV-1 , Vacinas , Coelhos , Animais , Camundongos , Anticorpos Anti-HIV , Produtos do Gene env do Vírus da Imunodeficiência Humana , Anticorpos Neutralizantes , Vacinas/metabolismo , Polissacarídeos/metabolismo
17.
bioRxiv ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37425865

RESUMO

Immunodominance of antibodies targeting non-neutralizing epitopes and the high level of somatic hypermutation within germinal centers (GCs) required for most HIV broadly neutralizing antibodies (bnAbs) are major impediments to the development of an effective HIV vaccine. Rational protein vaccine design and non-conventional immunization strategies are potential avenues to overcome these hurdles. Here, we report using implantable osmotic pumps to continuously deliver a series of epitope-targeted immunogens to rhesus macaques over the course of six months to elicit immune responses against the conserved fusion peptide. Antibody specificities and GC responses were tracked longitudinally using electron microscopy polyclonal epitope mapping (EMPEM) and lymph node fine-needle aspirates, respectively. Application of cryoEMPEM delineated key residues for on-target and off-target responses that can drive the next round of structure-based vaccine design.

18.
Cell Rep ; 42(5): 112524, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37209096

RESUMO

Lassa fever is an acute hemorrhagic fever caused by the zoonotic Lassa virus (LASV). The LASV glycoprotein complex (GPC) mediates viral entry and is the sole target for neutralizing antibodies. Immunogen design is complicated by the metastable nature of recombinant GPCs and the antigenic differences among phylogenetically distinct LASV lineages. Despite the sequence diversity of the GPC, structures of most lineages are lacking. We present the development and characterization of prefusion-stabilized, trimeric GPCs of LASV lineages II, V, and VII, revealing structural conservation despite sequence diversity. High-resolution structures and biophysical characterization of the GPC in complex with GP1-A-specific antibodies suggest their neutralization mechanisms. Finally, we present the isolation and characterization of a trimer-preferring neutralizing antibody belonging to the GPC-B competition group with an epitope that spans adjacent protomers and includes the fusion peptide. Our work provides molecular detail information on LASV antigenic diversity and will guide efforts to design pan-LASV vaccines.


Assuntos
Febre Lassa , Vírus Lassa , Humanos , Anticorpos Neutralizantes , Febre Lassa/prevenção & controle , Glicoproteínas , Antígenos Virais
19.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37905007

RESUMO

Many naturally occurring protein assemblies have dynamic structures that allow them to perform specialized functions. For example, clathrin coats adopt a wide variety of architectures to adapt to vesicular cargos of various sizes. Although computational methods for designing novel self-assembling proteins have advanced substantially over the past decade, most existing methods focus on designing static structures with high accuracy. Here we characterize the structures of three distinct computationally designed protein assemblies that each form multiple unanticipated architectures, and identify flexibility in specific regions of the subunits of each assembly as the source of structural diversity. Cryo-EM single-particle reconstructions and native mass spectrometry showed that only two distinct architectures were observed in two of the three cases, while we obtained six cryo-EM reconstructions that likely represent a subset of the architectures present in solution in the third case. Structural modeling and molecular dynamics simulations indicated that the surprising observation of a defined range of architectures, instead of non-specific aggregation, can be explained by constrained flexibility within the building blocks. Our results suggest that deliberate use of structural flexibility as a design principle will allow exploration of previously inaccessible structural and functional space in designed protein assemblies.

20.
PNAS Nexus ; 1(5): pgac253, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712368

RESUMO

Non-polio enteroviruses (NPEVs) cause serious illnesses in young children and neonates, including aseptic meningitis, encephalitis, and inflammatory muscle disease, among others. While over 100 serotypes have been described to date, vaccine only exists for EV-A71. Efforts toward rationally designed pan-NPEV vaccines would greatly benefit from structural biology methods for rapid and comprehensive evaluation of vaccine candidates and elicited antibody responses. Toward this goal, we introduced a cryo-electron-microscopy-based approach for structural analysis of virus- or vaccine-elicited polyclonal antibodies (pAbs) in complex with whole NPEV virions. We demonstrated the feasibility using coxsackievirus A21 and reconstructed five structurally distinct pAbs bound to the virus. The pAbs targeted two immunodominant epitopes, one overlapping with the receptor binding site. These results demonstrate that our method can be applied to map broad-spectrum polyclonal immune responses against intact virions and define potentially cross-reactive epitopes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA