Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(12): 120402, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32281831

RESUMO

We show-both theoretically and experimentally-that Einstein-Podolsky-Rosen steering can be distilled. We present a distillation protocol that outputs a perfectly correlated system-the singlet assemblage-in the asymptotic infinite-copy limit, even for inputs that are arbitrarily close to being unsteerable. As figures of merit for the protocol's performance, we introduce the assemblage fidelity and the singlet-assemblage fraction. These are potentially interesting quantities on their own beyond the current scope. Remarkably, the protocol works well also in the nonasymptotic regime of few copies, in the sense of increasing the singlet-assemblage fraction. We demonstrate the efficacy of the protocol using a hyperentangled photon pair encoding two copies of a two-qubit state. This represents to our knowledge the first observation of deterministic steering concentration. Our findings are not only fundamentally important but may also be useful for semi-device-independent protocols in noisy quantum networks.

2.
Phys Rev Lett ; 120(14): 140408, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29694116

RESUMO

We theoretically predict, and experimentally verify with entangled photons, that outcome communication is not enough for hidden-state models to reproduce quantum steering. Hidden-state models with outcome communication correspond, in turn, to the well-known instrumental processes of causal inference but in the one-sided device-independent scenario of one black-box measurement device and one well-characterized quantum apparatus. We introduce one-sided device-independent instrumental inequalities to test against these models, with the appealing feature of detecting entanglement even when communication of the black box's measurement outcome is allowed. We find that, remarkably, these inequalities can also be violated solely with steering, i.e., without outcome communication. In fact, an efficiently computable formal quantifier-the robustness of noninstrumentality-naturally arises, and we prove that steering alone is enough to maximize it. Our findings imply that quantum theory admits a stronger form of steering than known until now, with fundamental as well as practical potential implications.

3.
Phys Rev Lett ; 120(19): 190501, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29799258

RESUMO

The experimental interest and developments in quantum spin-1/2 chains has increased uninterruptedly over the past decade. In many instances, the target quantum simulation belongs to the broader class of noninteracting fermionic models, constituting an important benchmark. In spite of this class being analytically efficiently tractable, no direct certification tool has yet been reported for it. In fact, in experiments, certification has almost exclusively relied on notions of quantum state tomography scaling very unfavorably with the system size. Here, we develop experimentally friendly fidelity witnesses for all pure fermionic Gaussian target states. Their expectation value yields a tight lower bound to the fidelity and can be measured efficiently. We derive witnesses in full generality in the Majorana-fermion representation and apply them to experimentally relevant spin-1/2 chains. Among others, we show how to efficiently certify strongly out-of-equilibrium dynamics in critical Ising chains. At the heart of the measurement scheme is a variant of importance sampling specially tailored to overlaps between covariance matrices. The method is shown to be robust against finite experimental-state infidelities.

4.
Phys Rev Lett ; 112(16): 160501, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24815628

RESUMO

A measurement-based quantum computer could consist of a local-gapped Hamiltonian system, whose thermal states-at sufficiently low temperature-are universal resources for the computation. Initialization of the computer would correspond to cooling the system. We perform an experimental quantum simulation of such a cooling process with entangled photons. We prepare three-qubit thermal cluster states exploiting the equivalence between local dephasing and thermalization for these states. This allows us to tune the system's temperature by changing the dephasing strength. We monitor the entanglement as the system cools down and observe the transitions from separability to bound entanglement, and then to free entanglement. We also analyze the performance of the system for measurement-based single-qubit state preparation. These studies constitute a basic characterization of experimental cluster-state computation under imperfect conditions.

5.
Phys Rev Lett ; 100(8): 080501, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18352609

RESUMO

We investigate the decay of entanglement of generalized N-particle Greenberger-Horne-Zeilinger (GHZ) states interacting with independent reservoirs. Scaling laws for the decay of entanglement and for its finite-time extinction (sudden death) are derived for different types of reservoirs. The latter is found to increase with N. However, entanglement becomes arbitrarily small, and therefore useless as a resource, much before it completely disappears, around a time which is inversely proportional to the number of particles. We also show that the decay of multiparticle GHZ states can generate bound entangled states.

6.
Phys Rev Lett ; 98(10): 100501, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17358518

RESUMO

We propose a scheme for encoding logical qubits in a subspace protected against collective rotations around the propagation axis using the polarization and transverse spatial degrees of freedom of single photons. This encoding allows for quantum key distribution without the need of a shared reference frame. We present methods to generate entangled states of two logical qubits using present day down-conversion sources and linear optics, and show that the application of these entangled logical states to quantum information schemes allows for alignment-free tests of Bell's inequalities, quantum dense coding, and quantum teleportation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA