Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Development ; 143(13): 2431-42, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27381228

RESUMO

Differences in neuroepithelial patterning and neurogenesis modes contribute to area-specific diversifications of neural circuits. In the Drosophila visual system, two neuroepithelia, the outer (OPC) and inner (IPC) proliferation centers, generate neuron subtypes for four ganglia in several ways. Whereas neuroepithelial cells in the medial OPC directly convert into neuroblasts, in an IPC subdomain they generate migratory progenitors by epithelial-mesenchymal transition that mature into neuroblasts in a second proliferative zone. The molecular mechanisms that regulate the identity of these neuroepithelia, including their neurogenesis modes, remain poorly understood. Analysis of Polycomblike revealed that loss of Polycomb group-mediated repression of the Hox gene Abdominal-B (Abd-B) caused the transformation of OPC to IPC neuroepithelial identity. This suggests that the neuroepithelial default state is IPC-like, whereas OPC identity is derived. Ectopic Abd-B blocks expression of the highly conserved retinal determination gene network members Eyes absent (Eya), Sine oculis (So) and Homothorax (Hth). These factors are essential for OPC specification and neurogenesis control. Finally, eya and so are also sufficient to confer OPC-like identity, and, in parallel with hth, the OPC-specific neurogenesis mode on the IPC.


Assuntos
Padronização Corporal/genética , Drosophila melanogaster/genética , Genes de Insetos , Células Neuroepiteliais/metabolismo , Neurogênese/genética , Lobo Óptico de Animais não Mamíferos/embriologia , Lobo Óptico de Animais não Mamíferos/metabolismo , Retina/embriologia , Animais , Diferenciação Celular/genética , Proliferação de Células , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Embrião não Mamífero/metabolismo , Transição Epitelial-Mesenquimal/genética , Testes Genéticos , Mutação/genética , Células Neuroepiteliais/citologia , Lobo Óptico de Animais não Mamíferos/citologia , Retina/metabolismo , Células-Tronco/citologia
2.
Development ; 140(9): 1912-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23515471

RESUMO

Tightly controlled DNA replication and RNA transcription are essential for differentiation and tissue growth in multicellular organisms. Histone chaperones, including the FACT (facilitates chromatin transcription) complex, are central for these processes and act by mediating DNA access through nucleosome reorganisation. However, their roles in vertebrate organogenesis are poorly understood. Here, we report the identification of zebrafish mutants for the gene encoding Structure specific recognition protein 1a (Ssrp1a), which, together with Spt16, forms the FACT heterodimer. Focussing on the liver and eye, we show that zygotic Ssrp1a is essential for proliferation and differentiation during organogenesis. Specifically, gene expression indicative of progressive organ differentiation is disrupted and RNA transcription is globally reduced. Ssrp1a-deficient embryos exhibit DNA synthesis defects and prolonged S phase, uncovering a role distinct from that of Spt16, which promotes G1 phase progression. Gene deletion/replacement experiments in Drosophila show that Ssrp1b, Ssrp1a and N-terminal Ssrp1a, equivalent to the yeast homologue Pob3, can substitute Drosophila Ssrp function. These data suggest that (1) Ssrp1b does not compensate for Ssrp1a loss in the zebrafish embryo, probably owing to insufficient expression levels, and (2) despite fundamental structural differences, the mechanisms mediating DNA accessibility by FACT are conserved between yeast and metazoans. We propose that the essential functions of Ssrp1a in DNA replication and gene transcription, together with its dynamic spatiotemporal expression, ensure organ-specific differentiation and proportional growth, which are crucial for the forming embryo.


Assuntos
Ciclo Celular , Organogênese , Transcrição Gênica , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Proliferação de Células , Montagem e Desmontagem da Cromatina , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/embriologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Endoderma/citologia , Endoderma/embriologia , Endoderma/metabolismo , Olho/citologia , Olho/embriologia , Olho/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Discos Imaginais/citologia , Discos Imaginais/embriologia , Discos Imaginais/metabolismo , Fígado/citologia , Fígado/embriologia , Fígado/metabolismo , Masculino , Índice Mitótico , Mutação , RNA/biossíntese , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
3.
J Neurogenet ; 28(3-4): 233-49, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24912777

RESUMO

The brain areas that endow insects with the ability to see consist of remarkably complex neural circuits. Reiterated arrays of many diverse neuron subtypes are assembled into modular yet coherent functional retinotopic maps. Tremendous progress in developing genetic tools and cellular markers over the past years advanced our understanding of the mechanisms that control the stepwise production and differentiation of neurons in the visual system of Drosophila melanogaster. The postembryonic optic lobe utilizes at least two modes of neurogenesis that are distinct from other parts of the fly central nervous system. In the first optic ganglion, the lamina, neuroepithelial cells give rise to precursor cells, whose proliferation and differentiation depend on anterograde signals from photoreceptor axons. In the second optic ganglion, the medulla, the coordinated activity of four signaling pathways orchestrates the gradual conversion of neuroepithelial cells into neuroblasts, while a specific cascade of temporal identity transcription factors controls subtype diversification of their progeny.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Células-Tronco Neurais/citologia , Neurogênese/genética , Lobo Óptico de Animais não Mamíferos/citologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo
4.
Dev Biol ; 369(2): 261-76, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22796650

RESUMO

During the development of locomotion circuits it is essential that motoneurons with distinct subtype identities select the correct trajectories and target muscles. In vertebrates, the generation of motoneurons and myelinating glia depends on Olig2, one of the five Olig family bHLH transcription factors. We investigated the so far unknown function of the single Drosophila homolog Oli. Combining behavioral and genetic approaches, we demonstrate that oli is not required for gliogenesis, but plays pivotal roles in regulating larval and adult locomotion, and axon pathfinding and targeting of embryonic motoneurons. In the embryonic nervous system, Oli is primarily expressed in postmitotic progeny, and in particular, in distinct ventral motoneuron subtypes. oli mediates axonal trajectory selection of these motoneurons within the ventral nerve cord and targeting to specific muscles. Genetic interaction assays suggest that oli acts as part of a conserved transcription factor ensemble including Lim3, Islet and Hb9. Moreover, oli is expressed in postembryonic leg-innervating motoneuron lineages and required in glutamatergic neurons for walking. Finally, over-expression of vertebrate Olig2 partially rescues the walking defects of oli-deficient flies. Thus, our findings reveal a remarkably conserved role of Drosophila Oli and vertebrate family members in regulating motoneuron development, while the steps that require their function differ in detail.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula , Galinhas , Primers do DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Genes de Insetos , Locomoção/fisiologia , Dados de Sequência Molecular , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Neurogênese/fisiologia , Neuroglia/citologia , Neuroglia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
5.
Nat Commun ; 9(1): 2295, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895891

RESUMO

Visual motion detection in sighted animals is essential to guide behavioral actions ensuring their survival. In Drosophila, motion direction is first detected by T4/T5 neurons. Their axons innervate one of the four lobula plate layers. How T4/T5 neurons with layer-specific representation of motion-direction preferences are specified during development is unknown. We show that diffusible Wingless (Wg) between adjacent neuroepithelia induces its own expression to form secondary signaling centers. These activate Decapentaplegic (Dpp) signaling in adjacent lateral tertiary neuroepithelial domains dedicated to producing layer 3/4-specific T4/T5 neurons. T4/T5 neurons derived from the core domain devoid of Dpp signaling adopt the default layer 1/2 fate. Dpp signaling induces the expression of the T-box transcription factor Optomotor-blind (Omb), serving as a relay to postmitotic neurons. Omb-mediated repression of Dachshund transforms layer 1/2- into layer 3/4-specific neurons. Hence, spatio-temporal relay mechanisms, bridging the distances between neuroepithelial domains and their postmitotic progeny, implement T4/T5 neuron-subtype identity.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Percepção de Movimento , Proteínas do Tecido Nervoso/metabolismo , Proteínas com Domínio T/metabolismo , Visão Ocular , Alelos , Animais , Axônios/metabolismo , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Domínios Proteicos , Interferência de RNA , Transdução de Sinais , Asas de Animais/crescimento & desenvolvimento , Proteína Wnt1/metabolismo
6.
Nat Neurosci ; 18(1): 46-55, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25501037

RESUMO

Brain areas each generate specific neuron subtypes during development. However, underlying regional variations in neurogenesis strategies and regulatory mechanisms remain poorly understood. In Drosophila, neurons in four optic lobe ganglia originate from two neuroepithelia, the outer (OPC) and inner (IPC) proliferation centers. Using genetic manipulations, we found that one IPC neuroepithelial domain progressively transformed into migratory progenitors that matured into neural stem cells (neuroblasts) in a second domain. Progenitors emerged by an epithelial-mesenchymal transition-like mechanism that required the Snail-family member Escargot and, in subdomains, Decapentaplegic signaling. The proneural factors Lethal of scute and Asense differentially controlled progenitor supply and maturation into neuroblasts. These switched expression from Asense to a third proneural protein, Atonal. Dichaete and Tailless mediated this transition, which was essential for generating two neuron populations at defined positions. We propose that this neurogenesis mode is central for setting up a new proliferative zone to facilitate spatio-temporal matching of neurogenesis and connectivity across ganglia.


Assuntos
Movimento Celular/fisiologia , Drosophila/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Visão Ocular/fisiologia , Animais , Encéfalo/anatomia & histologia , Proliferação de Células , Gânglios dos Invertebrados/fisiologia , Regulação da Expressão Gênica no Desenvolvimento
8.
Cell ; 128(5): 961-75, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17350579

RESUMO

Anaplastic lymphoma kinase (Alk) has been proposed to regulate neuronal development based on its expression pattern in vertebrates and invertebrates; however, its function in vivo is unknown. We demonstrate that Alk and its ligand Jelly belly (Jeb) play a central role as an anterograde signaling pathway mediating neuronal circuit assembly in the Drosophila visual system. Alk is expressed and required in target neurons in the optic lobe, whereas Jeb is primarily generated by photoreceptor axons and functions in the eye to control target selection of R1-R6 axons in the lamina and R8 axons in the medulla. Impaired Jeb/Alk function affects layer-specific expression of three cell-adhesion molecules, Dumbfounded/Kirre, Roughest/IrreC, and Flamingo, in the medulla. Moreover, loss of flamingo in target neurons causes some R8-axon targeting errors observed in Jeb and Alk mosaic animals. Together, these findings suggest that Jeb/Alk signaling helps R-cell axons to shape their environment for target recognition.


Assuntos
Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Tirosina Quinases/metabolismo , Quinase do Linfoma Anaplásico , Animais , Animais Geneticamente Modificados , Caderinas/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Olho/crescimento & desenvolvimento , Olho/inervação , Proteínas do Olho/metabolismo , Feminino , Larva/crescimento & desenvolvimento , Masculino , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas Tirosina Quinases/genética , Pupa/crescimento & desenvolvimento , Receptores Proteína Tirosina Quinases , Retina/citologia , Retina/crescimento & desenvolvimento , Retina/metabolismo , Transdução de Sinais
9.
Dev Genes Evol ; 215(9): 460-69, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16096801

RESUMO

Roughest (Rst) is a cell adhesion molecule of the immunoglobulin superfamily that has multiple and diverse functions during the development of Drosophila melanogaster. The pleiotropic action of Rst is reflected by its complex and dynamic expression during the development of Drosophila. By an enhancer detection screen, we previously identified several cis-regulatory modules that mediate specific expression of the roughest gene in Drosophila developmental processes. To identify trans-regulators of rst expression, we used the Gal4/UAS system to screen for factors that were sufficient to activate Rst expression when ectopically expressed. By this method we identified the transcription factors Single-minded, Pointed.P1, and Su(H)-VP16. Furthermore, we showed that these factors and, in addition, Dmef2 are able to ectopically activate rst expression via the previously described rst cis-regulatory modules. This fact and the use of mutant analysis allocates the action of the transcription factors to specific developmental contexts. In the case of Sim, we could show that it regulates rst expression in the embryonic midline, but not in the optic lobes. Mutagenesis of Sim consensus binding sites in the regulatory module required for rst expression in the embryonic midline, abolished rst expression; indicating that the regulation of rst by Sim is direct.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Moléculas de Adesão Celular Neuronais/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Olho/genética , Fatores de Regulação Miogênica/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Elementos Reguladores de Transcrição , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Moléculas de Adesão Celular Neuronais/metabolismo , Sequência Consenso , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Imuno-Histoquímica , Mutagênese Sítio-Dirigida , Fatores de Regulação Miogênica/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Lobo Óptico de Animais não Mamíferos/embriologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
10.
Dev Genes Evol ; 214(9): 453-9, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15278452

RESUMO

Roughest (Rst) is a cell adhesion molecule of the immunoglobulin superfamily with pleiotropic functions during the development of Drosophila melanogaster. It has been shown to be involved in cell sorting before apoptosis in the developing compound eye, in fusion processes of embryonic muscle development and in axonal pathfinding. In accordance with its multiple functions, the rst gene shows a dynamic expression pattern throughout the development of Drosophila. In order to understand the transcriptional regulation of rst expression we have identified rst cis regulatory sequences in an enhancer detection screen. By dissection of the identified rst cis regulatory sequences we identified several distinct rst regulatory modules. Among others these include elements for expression in interommatidial cells of the pupal eye disc at a time when apoptotic decisions are made in these cells and elements for expression in the embryonic mesoderm. The expression of rst in the embryonic mesoderm is regulated by at least two separate modules.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Genes Reporter , Imuno-Histoquímica , Mesoderma/fisiologia , Microscopia Confocal , Mapeamento Físico do Cromossomo , Sítio de Iniciação de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA