Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 15: 452, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24912583

RESUMO

BACKGROUND: Salmonella enterica serovar Typhimurium is a gram-negative bacterium that can colonise the gut of humans and several species of food producing farm animals to cause enteric or septicaemic salmonellosis. While many studies have looked into the host genetic response to Salmonella infection, relatively few have used correlation of shedding traits with gene expression patterns to identify genes whose variable expression among different individuals may be associated with differences in Salmonella clearance and resistance. Here, we aimed to identify porcine genes and gene co-expression networks that differentiate distinct responses to Salmonella challenge with respect to faecal Salmonella shedding. RESULTS: Peripheral blood transcriptome profiles from 16 pigs belonging to extremes of the trait of faecal Salmonella shedding counts recorded up to 20 days post-inoculation (low shedders (LS), n = 8; persistent shedders (PS), n = 8) were generated using RNA-sequencing from samples collected just before (day 0) and two days after (day 2) Salmonella inoculation. Weighted gene co-expression network analysis (WGCNA) of day 0 samples identified four modules of co-expressed genes significantly correlated with Salmonella shedding counts upon future challenge. Two of those modules consisted largely of innate immunity related genes, many of which were significantly up-regulated at day 2 post-inoculation. The connectivity at both days and the mean gene-wise expression levels at day 0 of the genes within these modules were higher in networks constructed using LS samples alone than those using PS alone. Genes within these modules include those previously reported to be involved in Salmonella resistance such as SLC11A1 (formerly NRAMP1), TLR4, CD14 and CCR1 and those for which an association with Salmonella is novel, for example, SIGLEC5, IGSF6 and TNFSF13B. CONCLUSIONS: Our analysis integrates gene co-expression network analysis, gene-trait correlations and differential expression to provide new candidate regulators of Salmonella shedding in pigs. The comparatively higher expression (also confirmed in an independent dataset) and the significantly higher connectivity of genes within the Salmonella shedding associated modules in LS compared to PS even before Salmonella challenge may be factors that contribute to the decreased faecal Salmonella shedding observed in LS following challenge.


Assuntos
Fezes/microbiologia , Salmonelose Animal/genética , Salmonella typhimurium/fisiologia , Doenças dos Suínos/genética , Animais , Derrame de Bactérias , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Imunidade Inata , Salmonelose Animal/sangue , Salmonelose Animal/microbiologia , Suínos , Doenças dos Suínos/sangue , Doenças dos Suínos/microbiologia
2.
BMC Genomics ; 14: 609, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24020371

RESUMO

BACKGROUND: Understanding how species-specific microRNAs (miRNAs) contribute to species-specific phenotypes is a central topic in biology. This study aimed to elucidate the role of ruminant-specific miRNAs in shaping mRNA expression divergence between ruminant and non-ruminant species. RESULTS: We analyzed miRNA and mRNA transcriptomes generated by Illumina sequencing from whole blood samples of cattle and a closely related non-ruminant species, pig. We found evidence of expansion of cattle-specific miRNAs by analyzing miRNA conservation among 57 vertebrate species. The emergence of cattle-specific miRNAs was accompanied by accelerated sequence evolution at their target sites. Further, the target genes of cattle-specific miRNAs show markedly reduced expression compared to their pig and human orthologues. We found that target genes with conserved or non-conserved target sites of cattle-specific miRNAs exhibit reduced expression. One of the significantly enriched KEGG pathway terms for the target genes of the cattle-specific miRNAs is the insulin signalling pathway, raising the possibility that some of these miRNAs may modulate insulin resistance in ruminants. CONCLUSIONS: We provide evidence of rapid miRNA-mediated regulatory evolution in the ruminant lineage. Cattle-specific miRNAs play an important role in shaping gene expression divergence between ruminant and non-ruminant species, by influencing the expression of targets genes through both conserved and cattle-specific target sites.


Assuntos
Bovinos/genética , MicroRNAs/genética , Ruminantes/genética , Animais , Sequência de Bases , Sequência Conservada , Evolução Molecular , Biblioteca Gênica , Humanos , Especificidade da Espécie , Suínos , Transcriptoma
3.
BMC Genomics ; 13: 202, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22621371

RESUMO

BACKGROUND: Continued sequencing efforts coupled with advances in sequencing technology will lead to the completion of a vast number of small genomes. Whole-genome comparisons represent an important part of the analysis of any new genome sequence, as they can provide a better understanding of the biology and evolution of the source organism. Visualization of the results is important, as it allows information from a variety of sources to be integrated and interpreted. However, existing graphical comparison tools lack features needed for efficiently comparing a new genome to hundreds or thousands of existing sequences. Moreover, existing tools are limited in terms of the types of comparisons that can be performed, the extent to which the output can be customized, and the ease with which the entire process can be automated. RESULTS: The CGView Comparison Tool (CCT) is a package for visually comparing bacterial, plasmid, chloroplast, or mitochondrial sequences of interest to existing genomes or sequence collections. The comparisons are conducted using BLAST, and the BLAST results are presented in the form of graphical maps that can also show sequence features, gene and protein names, COG (Clusters of Orthologous Groups of proteins) category assignments, and sequence composition characteristics. CCT can generate maps in a variety of sizes, including 400 Megapixel maps suitable for posters. Comparisons can be conducted within a particular species or genus, or all available genomes can be used. The entire map creation process, from downloading sequences to redrawing zoomed maps, can be completed easily using scripts included with the CCT. User-defined features or analysis results can be included on maps, and maps can be extensively customized. To simplify program setup, a CCT virtual machine that includes all dependencies preinstalled is available. Detailed tutorials illustrating the use of CCT are included with the CCT documentation. CONCLUSION: CCT can be used to visually compare a reference sequence to thousands of existing genomes or sequence collections (next-generation sequencing reads for example) on a standard desktop computer. It provides analysis and visualization functionality not available in any existing circular genome visualization tool. By visually presenting sequence conservation information along with functional classifications and sequence composition characteristics, CCT can be a useful tool for identifying rapidly evolving or novel sequences, horizontally transferred sequences, or unusual functional properties in newly sequenced genomes. CCT is freely available for download at http://stothard.afns.ualberta.ca/downloads/CCT/.


Assuntos
Genoma Bacteriano/genética , Análise de Sequência de DNA/métodos , Software , Cloroplastos/genética , Mitocôndrias/genética , Plasmídeos/genética
4.
Bioinformatics ; 27(16): 2300-1, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21697123

RESUMO

SUMMARY: NGS-SNP is a collection of command-line scripts for providing rich annotations for SNPs identified by the sequencing of whole genomes from any organism with reference sequences in Ensembl. Included among the annotations, several of which are not available from any existing SNP annotation tools, are the results of detailed comparisons with orthologous sequences. These comparisons can, for example, identify SNPs that affect conserved residues, or alter residues or genes linked to phenotypes in another species. AVAILABILITY: NGS-SNP is available both as a set of scripts and as a virtual machine. The virtual machine consists of a Linux operating system with all the NGS-SNP dependencies pre-installed. The source code and virtual machine are freely available for download at http://stothard.afns.ualberta.ca/downloads/NGS-SNP/. CONTACT: stothard@ualberta.ca SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular/métodos , Polimorfismo de Nucleotídeo Único , Genômica , Software
5.
Sci Rep ; 5: 12620, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26227241

RESUMO

To understand the role of miRNAs in regulating genes involved in host response to bacterial infection and shedding of foodborne pathogens, a systematic profiling of miRNAs and mRNAs from the whole blood of pigs upon Salmonella challenge was performed. A total of 62 miRNAs were differentially expressed post infection (false discovery rate <0.1). An integrative analysis of both the differentially expressed miRNAs and mRNAs using sequence-based miRNA target prediction and negative correlation of miRNA-mRNA profiles helped identify miRNA-mRNA networks that may potentially regulate host response to Salmonella infection. From these networks, miR-214 and miR-331-3p were identified as new candidates potentially associated with Salmonella infection. An miRNA seed sequence analysis suggested that these miRNAs regulate several critical immune-related genes including SLC11A1, PIGE-108A11.3 and VAV2. We showed that challenged pigs had reduced miR-214 expression and increased miR-331-3p expression in the whole blood. Furthermore, the expression of the proposed targets of miR-214 (SLC11A1 and PIGE-108A11.3) increased while that of the proposed target of miR-331-3p (VAV2) decreased following challenge (expression changes confirmed by in vitro assays). Based on these observations, we propose potential roles for miR-214 and miR-331-3p in regulation of immune responses to Salmonella infection.


Assuntos
MicroRNAs/genética , Salmonelose Animal/genética , Sus scrofa/genética , Animais , Proteínas de Transporte de Cátions/genética , Doenças Transmitidas por Alimentos/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/genética , MicroRNAs/sangue , RNA Mensageiro/sangue , Reprodutibilidade dos Testes , Salmonelose Animal/imunologia , Sus scrofa/microbiologia
6.
Gigascience ; 4: 49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26504517

RESUMO

BACKGROUND: The Canadian Cattle Genome Project is a large-scale international project that aims to develop genomics-based tools to enhance the efficiency and sustainability of beef and dairy production. Obtaining DNA sequence information is an important part of achieving this goal as it facilitates efforts to associate specific DNA differences with phenotypic variation. These associations can be used to guide breeding decisions and provide valuable insight into the molecular basis of traits. FINDINGS: We describe a dataset of 379 whole-genome sequences, taken primarily from key historic Bos taurus animals, along with the analyses that were performed to assess data quality. The sequenced animals represent ten populations relevant to beef or dairy production. Animal information (name, breed, population), sequence data metrics (mapping rate, depth, concordance), and sequence repository identifiers (NCBI BioProject and BioSample IDs) are provided to enable others to access and exploit this sequence information. CONCLUSIONS: The large number of whole-genome sequences generated as a result of this project will contribute to ongoing work aiming to catalogue the variation that exists in cattle as well as efforts to improve traits through genotype-guided selection. Studies of gene function, population structure, and sequence evolution are also likely to benefit from the availability of this resource.


Assuntos
Genoma , Animais , Canadá , Bovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA