Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Mod Pathol ; 27(12): 1599-611, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24762547

RESUMO

Post-transplant lymphoproliferative disorders are life-threatening complications following hematopoietic or solid organ transplantation. They represent a spectrum of mostly EBV-driven lymphoplasmacytic proliferations. While the oncogenic effect of EBV is related to latent infection, lytic infection also has a role in lymphomagenesis. In vitro, EBV replication is linked to plasma cell differentiation and XBP1 activation, although this phenomenon has never been addressed in vivo. We analyzed for the first time latent and lytic intratumoral EBV infection in a series of 35 adult patients with a diagnosis of post-transplant lymphoproliferative disorder (26M/9F, median age 54 years). A complete EBV study was performed including the analysis of the latent EBER, latent membrane protein-11, and EBV nuclear antigens as well as the immediate-early BZLF1/ZEBRA and early BMRF1/EADE31 lytic genes. XBP1 activation was assessed by nuclear protein expression. EBV infection was observed in 28 (80%) cases being latency II and III the most frequently observed 22 (79%). Intratumoral EBV replication was detected in 17 (60%) cases. Among these, XBP1 activation was observed in 11/12 evaluable cases associated with strong cytoplasmic immunoglobulin expression consistent with plasma cell differentiation. Intriguingly, the combination of latency III infection and EBV replication identified a high-risk subgroup of patients with significantly shorter survival (overall survival at 1 year 18% vs 48%) and early-onset (median of 7 vs 26 months) post-transplant lymphoproliferative disorder. Moreover, these patients appear to be more heavily immunosuppressed, so they exhibit lower rates of rejection and graft vs host disease but higher rates of cytomegalovirus reactivation. In conclusion, EBV replication is associated with plasma cell differentiation and XBP1 activation with prognostic implications. Both latency III and lytic EBV infection are related to aggressive and early-onset post-transplant lymphoproliferative disorder. These results suggest that immunohistochemical study of latent and lytic EBV genes in the clinical practice may help to select higher-risk patients to new therapies including antiviral treatments.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Transtornos Linfoproliferativos/imunologia , Transtornos Linfoproliferativos/virologia , Transplante de Órgãos , Fatores de Transcrição/metabolismo , Adulto , Idoso , Western Blotting , Diferenciação Celular , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/mortalidade , Feminino , Herpesvirus Humano 4/fisiologia , Humanos , Hospedeiro Imunocomprometido/imunologia , Hibridização in Situ Fluorescente , Estimativa de Kaplan-Meier , Transtornos Linfoproliferativos/mortalidade , Masculino , Pessoa de Meia-Idade , Transplante de Órgãos/efeitos adversos , Plasmócitos/virologia , Prognóstico , Fatores de Transcrição de Fator Regulador X , Replicação Viral , Proteína 1 de Ligação a X-Box
2.
Polymers (Basel) ; 14(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566940

RESUMO

Knowing the genotypes of Musa textilis and its fiber production properties is key for developing cultivars with homogeneous properties and focusing on specific products or market segments that generate added value to the fiber. For this reason, the objective was to determine the optimal use of five genotypes of M. textilis (MT01, MT03, MT07, MT11, and CF01) with high productivity grown in the tropical region of Costa Rica. Therefore, anatomical, physical-mechanical, chemical, and energetic analyses were carried out on these fibers to define whether any genotype has the ideal conditions for a specific use. The results showed differences between the genotypes, obtaining significant differences in physical-mechanical properties (tension, water retention, and color), chemical properties (holocellulose, lignin, extractives, and elemental values of nitrogen, carbon, and sulfur), and energetic properties (volatiles, ash, and caloric value thermogravimetric analyses), which resulted in the establishment of two groups of genotypes with a dissimilarity degree of 35%. The first group, composed of MT03 and MT01, presented characteristics suitable for paper production, biodegradable materials, and composite materials. On the other hand, the second group, made up of MT07, MT11, and CF01, showed properties suitable for textiles, heavy-duty fibers, and bioenergy.

3.
Membranes (Basel) ; 12(5)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35629828

RESUMO

Hybrid ceramic membranes (i.e., membranes with a layer-by-layer (LbL) coating) are an emerging technology to remove diverse kinds of micropollutants from water. Hybrid ceramic membranes were tested under laboratory conditions as single-channel (filter area = 0.00754 m2) and multi-channel (0.35 m2) variants for the removal of pharmaceuticals (sulfamethoxazole, diclofenac, clofibric acid, and ibuprofen) and typical wastewater pollutants (i.e., COD, TOC, PO4-P, and TN) from drinking water and treated wastewater. The tests were conducted with two low transmembrane pressures (TMP) of 2 and 4 bar and constant temperatures and flow velocities, which showed rejections above 80% for all the tested pharmaceuticals as well for organic pollutants and phosphorous in the treated wastewater. Tests regarding sufficient cleaning regimes also showed that the LbL coating is stable and resistant to pHs between 2 and 10 with the use of typical cleaning agents (citric acid and NaOH) but not to higher pHs, a commercially available enzymatic solution, or backwashing. The hybrid membranes can contribute to the advanced treatment of water and wastewater with low operational costs, and their application at a larger scale is viable. However, the cleaning of the membranes must be further investigated to assure the stability and durability of the LbL coating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA