Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Br J Nutr ; : 1-8, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38751244

RESUMO

A healthy diet is at the forefront of measures to prevent type 2 diabetes. Certain vegetable and fish oils, such as pine nut oil (PNO), have been demonstrated to ameliorate the adverse metabolic effects of a high-fat diet. The present study investigates the involvement of the free fatty acid receptors 1 (FFAR1) and 4 (FFAR4) in the chronic activity of hydrolysed PNO (hPNO) on high-fat diet-induced obesity and insulin resistance. Male C57BL/6J wild-type, FFAR1 knockout (-/-) and FFAR4-/- mice were placed on 60 % high-fat diet for 3 months. Mice were then dosed hPNO for 24 d, during which time body composition, energy intake and expenditure, glucose tolerance and fasting plasma insulin, leptin and adiponectin were measured. hPNO improved glucose tolerance and decreased plasma insulin in the wild-type and FFAR1-/- mice, but not the FFAR4-/- mice. hPNO also decreased high-fat diet-induced body weight gain and fat mass, whilst increasing energy expenditure and plasma adiponectin. None of these effects on energy balance were statistically significant in FFAR4-/- mice, but it was not shown that they were significantly less than in wild-type mice. In conclusion, chronic hPNO supplementation reduces the metabolically detrimental effects of high-fat diet on obesity and insulin resistance in a manner that is dependent on the presence of FFAR4.

2.
Int J Obes (Lond) ; 44(9): 1946-1957, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32719434

RESUMO

BACKGROUND: Though it is well established that neonatal nutrition plays a major role in lifelong offspring health, the mechanisms underpinning this have not been well defined. Early postnatal accelerated growth resulting from maternal nutritional status is associated with increased appetite and body weight. Likewise, slow growth correlates with decreased appetite and body weight. Food consumption and food-seeking behaviour are directly modulated by central serotonergic (5-hydroxytryptamine, 5-HT) pathways. This study examined the effect of a rat maternal postnatal low protein (PLP) diet on 5-HT receptor mediated food intake in offspring. METHODS: Microarray analyses, in situ hybridization or laser capture microdissection of the ARC followed by RT-PCR were used to identify genes up- or down-regulated in the arcuate nucleus of the hypothalamus (ARC) of 3-month-old male PLP rats. Third ventricle cannulation was used to identify altered sensitivity to serotonin receptor agonists and antagonists with respect to food intake. RESULTS: Male PLP offspring consumed less food and had lower growth rates up to 3 months of age compared with Control offspring from dams fed a normal diet. In total, 97 genes were upregulated including the 5-HT5A receptor (5-HT5AR) and 149 downregulated genes in PLP rats compared with Controls. The former obesity medication fenfluramine and the 5-HT receptor agonist 5-Carboxamidotryptamine (5-CT) significantly suppressed food intake in both groups, but the PLP offspring were more sensitive to d-fenfluramine and 5-CT compared with Controls. The effect of 5-CT was antagonized by the 5-HT5AR antagonist SB699551. 5-CT also reduced NPY-induced hyperphagia in both Control and PLP rats but was more effective in PLP offspring. CONCLUSIONS: Postnatal low protein programming of growth in rats enhances the central effects of serotonin on appetite by increasing hypothalamic 5-HT5AR expression and sensitivity. These findings provide insight into the possible mechanisms through which a maternal low protein diet during lactation programs reduced growth and appetite in offspring.


Assuntos
Apetite/fisiologia , Peso Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipotálamo/metabolismo , Receptores de Serotonina , Animais , Dieta , Feminino , Masculino , Obesidade/metabolismo , Ratos , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Transcriptoma/genética
3.
Arch Biochem Biophys ; 569: 26-31, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25660043

RESUMO

Studies in sarcolipin knockout mice have led to the suggestion that skeletal muscle sarcolipin plays a role in thermogenesis. The mechanism proposed is uncoupling of the sarcoplasmic reticulum calcium pump. However, in other work sarcolipin was not detected in mouse skeletal tissue. We have therefore measured sarcolipin levels in mouse skeletal muscle using semi-quantitative western blotting and synthetic mouse sarcolipin. Sarcolipin levels were so low that it is unlikely that knocking out sarcolipin would have a measurable effect on thermogenesis by SERCA. In addition, overexpression of neither wild type nor FLAG-tagged variants of mouse sarcolipin in transgenic mice had any major significant effects on body mass, energy expenditure, even when mice were fed on a high fat diet.


Assuntos
Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteolipídeos/genética , Proteolipídeos/metabolismo , Animais , Peso Corporal/genética , Peso Corporal/fisiologia , Dieta Hiperlipídica , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Termogênese/genética , Termogênese/fisiologia , Regulação para Cima
4.
Nat Methods ; 9(1): 57-63, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22205519

RESUMO

We present a consolidated view of the complexity and challenges of designing studies for measurement of energy metabolism in mouse models, including a practical guide to the assessment of energy expenditure, energy intake and body composition and statistical analysis thereof. We hope this guide will facilitate comparisons across studies and minimize spurious interpretations of data. We recommend that division of energy expenditure data by either body weight or lean body weight and that presentation of group effects as histograms should be replaced by plotting individual data and analyzing both group and body-composition effects using analysis of covariance (ANCOVA).


Assuntos
Ingestão de Energia , Metabolismo Energético , Camundongos/fisiologia , Animais , Composição Corporal , Meio Ambiente , Abrigo para Animais , Camundongos Mutantes/genética , Obesidade/etiologia , Fenótipo
5.
Br J Nutr ; 109(10): 1755-64, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23110765

RESUMO

SCFA are produced in the gut by bacterial fermentation of undigested carbohydrates. Activation of the Gαi-protein-coupled receptor GPR41 by SCFA in ß-cells and sympathetic ganglia inhibits insulin secretion and increases sympathetic outflow, respectively. A possible role in stimulating leptin secretion by adipocytes is disputed. In the present study, we investigated energy balance and glucose homoeostasis in GPR41 knockout mice fed on a standard low-fat or a high-fat diet. When fed on the low-fat diet, body fat mass was raised and glucose tolerance was impaired in male but not female knockout mice compared to wild-type mice. Soleus muscle and heart weights were reduced in the male mice, but total body lean mass was unchanged. When fed on the high-fat diet, body fat mass was raised in male but not female GPR41 knockout mice, but by no more in the males than when they were fed on the low-fat diet. Body lean mass and energy expenditure were reduced in male mice but not in female knockout mice. These results suggest that the absence of GPR41 increases body fat content in male mice. Gut-derived SCFA may raise energy expenditure and help to protect against obesity by activating GPR41.


Assuntos
Tecido Adiposo/metabolismo , Composição Corporal/genética , Gorduras na Dieta/farmacologia , Metabolismo Energético/genética , Ácidos Graxos Voláteis/metabolismo , Obesidade/genética , Receptores Acoplados a Proteínas G/genética , Tecido Adiposo/efeitos dos fármacos , Animais , Bactérias/metabolismo , Compartimentos de Líquidos Corporais/efeitos dos fármacos , Compartimentos de Líquidos Corporais/metabolismo , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Gorduras na Dieta/metabolismo , Feminino , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Intolerância à Glucose/genética , Coração/efeitos dos fármacos , Insulina/metabolismo , Secreção de Insulina , Leptina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/prevenção & controle , Tamanho do Órgão , Receptores Acoplados a Proteínas G/metabolismo , Fatores Sexuais
6.
Handb Exp Pharmacol ; (203): 201-55, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21484574

RESUMO

Exercise, together with a low-energy diet, is the first-line treatment for type 2 diabetes type 2 diabetes . Exercise improves insulin sensitivity insulin sensitivity by increasing the number or function of muscle mitochondria mitochondria and the capacity for aerobic metabolism, all of which are low in many insulin-resistant subjects. Cannabinoid 1-receptor antagonists and ß-adrenoceptor agonists improve insulin sensitivity in humans and promote fat oxidation in rodents independently of reduced food intake. Current drugs for the treatment of diabetes are not, however, noted for their ability to increase fat oxidation, although the thiazolidinediones increase the capacity for fat oxidation in skeletal muscle, whilst paradoxically increasing weight gain.There are a number of targets for anti-diabetic drugs that may improve insulin sensitivity insulin sensitivity by increasing the capacity for fat oxidation. Their mechanisms of action are linked, notably through AMP-activated protein kinase, adiponectin, and the sympathetic nervous system. If ligands for these targets have obvious acute thermogenic activity, it is often because they increase sympathetic activity. This promotes fuel mobilisation, as well as fuel oxidation. When thermogenesis thermogenesis is not obvious, researchers often argue that it has occurred by using the inappropriate device of treating animals for days or weeks until there is weight (mainly fat) loss and then expressing energy expenditure energy expenditure relative to body weight. In reality, thermogenesis may have occurred, but it is too small to detect, and this device distracts us from really appreciating why insulin sensitivity has improved. This is that by increasing fatty acid oxidation fatty acid oxidation more than fatty acid supply, drugs lower the concentrations of fatty acid metabolites that cause insulin resistance. Insulin sensitivity improves long before any anti-obesity effect can be detected.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/fisiopatologia , Hipoglicemiantes/farmacologia , Termogênese/efeitos dos fármacos , Animais , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Desenho de Fármacos , Terapia por Exercício , Hormônios/fisiologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Síndrome Metabólica/fisiopatologia , Síndrome Metabólica/terapia , Obesidade/tratamento farmacológico , Obesidade/fisiopatologia
7.
Front Endocrinol (Lausanne) ; 12: 698115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646232

RESUMO

Previous studies have shown that agonists of GPR17 stimulate, while antagonists inhibit feeding. However, whole body knockout of GPR17 in mice of the C57Bl/6 strain did not affect energy balance, whereas selective knockout in oligodendrocytes or pro-opiomelanocortin neurons provided protection from high fat diet-induced obesity and impaired glucose homeostasis. We reasoned that whole body knockout of GPR17 in mice of the 129 strain might elicit more marked effects because the 129 strain is more susceptible than the C57Bl/6 strain to increased sympathetic activity and less susceptible to high fat diet-induced obesity. Consistent with this hypothesis, compared to wild-type mice, and when fed on either a chow or a high fat diet, GPR17 -/- mice of the 129 strain displayed increased expression of uncoupling protein-1 in white adipose tissue, lower body weight and fat content, reduced plasma leptin, non-esterified fatty acids and triglycerides, and resistance to high fat diet-induced glucose intolerance. Not only energy expenditure, but also energy intake was raised. Administration of leptin did not suppress the increased food intake in GPR17 -/- mice of the 129 strain, whereas it did suppress food intake in GPR17 +/+ mice. The only difference between GPR17 +/- and GPR17 +/+ mice of the C57Bl/6 strain was that the body weight of the GPR17 -/- mice was lower than that of the GPR17 +/+ mice when the mice were fed on a standard chow diet. We propose that the absence of GPR17 raises sympathetic activity in mice of the 129 strain in response to a low plasma fuel supply, and that the consequent loss of body fat is partly mitigated by increased energy intake.


Assuntos
Ingestão de Energia , Leptina/sangue , Leptina/farmacologia , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Magreza/genética , Tecido Adiposo/metabolismo , Animais , Composição Corporal/genética , Ingestão de Energia/efeitos dos fármacos , Ingestão de Energia/fisiologia , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade da Espécie , Magreza/sangue
8.
J Nutr Sci ; 9: e23, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595967

RESUMO

Rodents with mutations in the leptin, or leptin receptor, genes have been extensively used to investigate the regulation of energy balance and the factors that underlie the development of obesity. The excess energy gain of these mutants has long been considered as being due in part to increased metabolic efficiency, consequent to reduced energy expenditure, but this view has recently been challenged. We argue, particularly though not exclusively, from data on ob/ob mice, that three lines of evidence support the proposition that reduced expenditure is important in the aetiology of obesity in leptin pathway mutants (irrespective of the genetic background): (i) milk intake is similar in suckling ob/ob and +/? mice; (ii) ob/ob mice deposit excess energy when pair-fed to the ad libitum food intake of lean siblings; (iii) in several studies mutant mice have been shown to exhibit a lower RMR 'per animal' at temperatures below thermoneutrality. When metabolic rate is expressed 'per unit body weight' (inappropriately, because of body composition differences), then it is invariably lower in the obese than the lean. It is important to differentiate the causes from the consequences of obesity. Hyperphagic, mature obese animals weighing 2-3 times their lean siblings may well have higher expenditure 'per animal', reflecting the costs of being larger and of enhanced obligatory diet-induced thermogenesis resulting from the increased food intake. This cannot, however, be used to inform the aetiology of their obesity.


Assuntos
Metabolismo Energético , Leptina/genética , Mutação , Obesidade/genética , Receptores para Leptina/genética , Animais , Composição Corporal , Ingestão de Alimentos , Hiperfagia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Leite , Termogênese
9.
PeerJ ; 8: e9811, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32904155

RESUMO

BACKGROUND: The insulin-sensitizing phytocannabinoid, Δ(9)-tetrahydrocannabivarin (THCV) can signal partly via G-protein coupled receptor-55 (GPR55 behaving as either an agonist or an antagonist depending on the assay). The cannabinoid receptor type 1 (CB1R) inverse agonist rimonabant is also a GPR55 agonist under some conditions. Previous studies have shown varied effects of deletion of GPR55 on energy balance and glucose homeostasis in mice. The contribution of signalling via GPR55 to the metabolic effects of THCV and rimonabant has been little studied. METHODS: In a preliminary experiment, energy balance and glucose homeostasis were studied in GPR55 knockout and wild-type mice fed on both standard chow (to 20 weeks of age) and high fat diets (from 6 to 15 weeks of age). In the main experiment, all mice were fed on the high fat diet (from 6 to 14 weeks of age). In addition to replicating the preliminary experiment, the effects of once daily administration of THCV (15 mg kg-1 po) and rimonabant (10 mg kg-1 po) were compared in the two genotypes. RESULTS: There was no effect of genotype on absolute body weight or weight gain, body composition measured by either dual-energy X-ray absorptiometry or Nuclear Magnetic Resonance (NMR), fat pad weights, food intake, energy expenditure, locomotor activity, glucose tolerance or insulin tolerance in mice fed on chow. When the mice were fed a high fat diet, there was again no effect of genotype on these various aspects of energy balance. However, in both experiments, glucose tolerance was worse in the knockout than the wild-type mice. Genotype did not affect insulin tolerance in either experiment. Weight loss in rimonabant- and THCV-treated mice was lower in knockout than in wild-type mice, but surprisingly there was no detectable effect of genotype on the effects of the drugs on any aspect of glucose homeostasis after taking into account the effect of genotype in vehicle-treated mice. CONCLUSIONS: Our two experiments differ from those reported by others in finding impaired glucose tolerance in GPR55 knockout mice in the absence of any effect on body weight, body composition, locomotor activity or energy expenditure. Nor could we detect any effect of genotype on insulin tolerance, so the possibility that GPR55 regulates glucose-stimulated insulin secretion merits further investigation. By contrast with the genotype effect in untreated mice, we found that THCV and rimonabant reduced weight gain, and this effect was in part mediated by GPR55.

10.
Naunyn Schmiedebergs Arch Pharmacol ; 378(2): 225-40, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18612674

RESUMO

Although beta3-adrenoceptor (beta3AR) agonists have not become drugs for the treatment of obesity or diabetes, they offer perspectives on obesity drug discovery, the physiology of energy expenditure and receptor pharmacology. beta3AR agonists, some of which also stimulate other betaARs in humans, selectively stimulate fat oxidation in rodents and humans. This appears to be why they improve insulin sensitivity and reduce body fat whilst preserving lean body mass. Regulatory authorities ask that novel anti-obesity drugs improve insulin sensitivity and reduce mainly body fat. Drugs that act on different targets to stimulate fat oxidation may also offer these benefits. Stimulation of energy expenditure may be easy to detect only when the sympathetic nervous system is activated. Leptin resembles beta3AR agonists in that it increases fat oxidation, energy expenditure and insulin sensitivity. This is partly because it raises sympathetic activity, but it may also promote fat oxidation by directly stimulating muscle leptin receptors. The beta1AR and beta2AR can, like the beta3AR, display atypical pharmacologies. Moreover, the beta3AR can display variable pharmacologies of its own, depending on the radioligand used in binding studies or the functional response measured. Studies on the beta3AR demonstrate both the difficulties of predicting the in vivo effects of agonist drugs from in vitro data and that there may be opportunities for identifying drugs that act at a single receptor but have different profiles in vivo.


Assuntos
Agonistas de Receptores Adrenérgicos beta 3 , Agonistas Adrenérgicos beta/farmacologia , Fármacos Antiobesidade/farmacologia , Leptina/metabolismo , Obesidade/tratamento farmacológico , Receptores para Leptina/efeitos dos fármacos , Animais , Metabolismo Energético/efeitos dos fármacos , História do Século XX , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/metabolismo , Oxirredução , Receptores Adrenérgicos beta 3/história , Receptores Adrenérgicos beta 3/metabolismo , Receptores para Leptina/metabolismo
11.
PeerJ ; 6: e4166, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29333341

RESUMO

BACKGROUND: Salvia officinalis (sage) is a native plant to the Mediterranean region and has been used for a long time in traditional medicine for various diseases. We investigated possible anti-diabetic, anti-inflammatory and anti-obesity effects of sage methanol (MetOH) extract in a nutritional mouse model of obesity, inflammation and insulin resistance, as well as its effects on lipolysis and lipogenesis in 3T3-L1 cells. METHODS: Diet-induced obese (DIO) mice were treated for five weeks with sage methanol extract (100 and 400 mg kg-1/day bid), or rosiglitazone (3 mg kg-1/day bid), as a positive control. Energy expenditure, food intake, body weight, fat mass, liver glycogen and lipid content were evaluated. Blood glucose, and plasma levels of insulin, lipids leptin and pro- and anti-inflammatory cytokines were measured throughout the experiment. The effects of sage MetOH extract on lipolysis and lipogenesis were tested in vitro in 3T3-L1 cells. RESULTS: After two weeks of treatment, the lower dose of sage MetOH extract decreased blood glucose and plasma insulin levels during an oral glucose tolerance test (OGTT). An insulin tolerance test (ITT), performed at day 29 confirmed that sage improved insulin sensitivity. Groups treated with low dose sage and rosiglitazone showed very similar effects on OGTT and ITT. Sage also improved HOMA-IR, triglycerides and NEFA. Treatment with the low dose increased the plasma levels of the anti-inflammatory cytokines IL-2, IL-4 and IL-10 and reduced the plasma level of the pro-inflammatory cytokines IL-12, TNF-α, and KC/GRO. The GC analysis revealed the presence of two PPARs agonist in sage MetOH extract. In vitro, the extract reduced in a dose-related manner the accumulation of lipid droplets; however no effect on lipolysis was observed. CONCLUSIONS: Sage MetOH extract at low dose exhibits similar effects to rosiglitazone. It improves insulin sensitivity, inhibits lipogenesis in adipocytes and reduces inflammation as judged by plasma cytokines. Sage presents an alternative to pharmaceuticals for the treatment of diabetes and associated inflammation.

12.
Lipids Health Dis ; 6: 2, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17239230

RESUMO

BACKGROUND: Mice that lack acyl CoA:diacylglycerol acyltransferase (Dgat1-/- mice) are reported to have a reduced body fat content and improved glucose tolerance and insulin sensitivity. Studies so far have focussed on male null mice fed a high fat diet and there are few data on heterozygotes. We compared male and female Dgat1-/-, Dgat1+/- and Dgat1+/+ C57Bl/6 mice fed on either standard chow or a high fat diet. RESULTS: Body fat content was lower in the Dgat1-/- than the Dgat1+/+ mice in both experiments; lean body mass was higher in male Dgat1-/- than Dgat1+/+ mice fed on the high fat diet. Energy intake and expenditure were higher in male Dgat1-/- than Dgat1+/+ mice; these differences were less marked or absent in females. The body fat content of female Dgat1+/- mice was intermediate between that of Dgat1-/- and Dgat1+/+ mice, whereas male Dgat1+/- mice were similar to or fatter than Dgat1+/+ mice. Glucose tolerance was improved and plasma insulin reduced in Dgat1-/- mice fed on the high fat diet, but not on the chow diet. Both male and female Dgat1+/- mice had similar glucose tolerance to Dgat1+/+ mice. CONCLUSION: These results suggest that although ablation of DGAT1 improves glucose tolerance by preventing obesity in mice fed on a high fat diet, it does not improve glucose tolerance in mice fed on a low fat diet.


Assuntos
Glicemia/metabolismo , Diacilglicerol O-Aciltransferase/deficiência , Dieta , Tecido Adiposo/anatomia & histologia , Ração Animal , Animais , Peso Corporal , Ingestão de Energia , Feminino , Genótipo , Masculino , Camundongos , Camundongos Knockout
13.
Arch Physiol Biochem ; 122(2): 75-87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26822470

RESUMO

OBJECTIVE: The potentially beneficial effects of pomegranate peel (PPE), flower (PFE) and seed oil (PSO) extracts, in comparison with rosiglitazone, on adiposity, lipid profile, glucose homoeostasis, as well as on the underlying inflammatory mechanisms, were examined in high-fat and high-sucrose (HF/HS) diet-induced obese (DIO) mice. MEASUREMENTS: Body weight, body fat, energy expenditure, food and liquid intake, blood glucose, and plasma levels of insulin, lipids and cytokines were measured. RESULTS: After two weeks, PSO (2 ml/kg/day) and rosiglitazone (3 mg/kg/day) had not improved glucose intolerance. After 4 weeks, both treatments significantly reduced fasting blood glucose and an insulin tolerance test showed that they also improved insulin sensitivity. Treatment with PPE, PFE and PSO, reduced the plasma levels of the pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α), and PFE increased the level of the anti-inflammatory cytokine interleukin-10 (IL-10). CONCLUSION: PPE, PFE and PSO have anti-inflammatory properties. PSO also improved insulin sensitivity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Flores/química , Resistência à Insulina , Lythraceae/química , Obesidade/tratamento farmacológico , Óleos de Plantas/farmacologia , Sementes/química , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Glicemia/metabolismo , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Citocinas/sangue , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/análise , Homeostase/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/prevenção & controle , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Obesidade/sangue , Obesidade/induzido quimicamente , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Óleos de Plantas/uso terapêutico , Polifenóis/análise , Sacarose/efeitos adversos , Triglicerídeos/sangue , Triglicerídeos/metabolismo
14.
Dis Model Mech ; 9(4): 401-12, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26769798

RESUMO

Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus ofin uterogrowth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist.


Assuntos
Crescimento e Desenvolvimento , Hipotálamo/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal/efeitos dos fármacos , Proteínas Alimentares/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Fenfluramina/administração & dosagem , Fenfluramina/farmacologia , Feto/efeitos dos fármacos , Feto/metabolismo , Crescimento e Desenvolvimento/efeitos dos fármacos , Hipotálamo/anatomia & histologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/crescimento & desenvolvimento , Microdissecção e Captura a Laser , Masculino , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Ratos Wistar , Reprodutibilidade dos Testes , Serotonina/metabolismo , Fatores de Tempo , Triptofano/metabolismo
15.
Lipids Health Dis ; 4: 3, 2005 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-15642120

RESUMO

BACKGROUND: Studies in rodents and some studies in humans have shown that conjugated linoleic acid (CLA), especially its trans-10, cis-12 isomer, reduces body fat content. However, some but not all studies in mice and humans (though none in rats) have found that CLA promotes insulin resistance. The molecular mechanisms responsible for these effects are unclear, and there are conflicting reports on the effects of CLA on peroxisomal proliferator-activated receptor-gamma (PPARgamma) activation and expression. We have conducted three experiments with CLA in obese mice over three weeks, and one over eleven weeks. We have also investigated the effects of CLA isomers in PPARgamma and PPARalpha reporter gene assays. RESULTS: Inclusion of CLA or CLA enriched with its trans-10, cis-12 isomer in the diet of female genetically obese (lepob/lepob) mice for up to eleven weeks reduced body weight gain and white fat pad weight. After two weeks, in contrast to beneficial effects obtained with the PPARgamma agonist rosiglitazone, CLA or CLA enriched with its trans-10, cis-12 isomer raised fasting blood glucose and plasma insulin concentrations, and exacerbated glucose tolerance. After 10 weeks, however, CLA had beneficial effects on glucose and insulin concentrations. At this time, CLA had no effect on the plasma TNFalpha concentration, but it markedly reduced the plasma adiponectin concentration. CLA and CLA enriched with either isomer raised the plasma triglyceride concentration during the first three weeks, but not subsequently. CLA enriched with its trans-10, cis-12 isomer, but not with its cis-9, trans-11 isomer, stimulated PPARgamma-mediated reporter gene activity; both isomers stimulated PPARalpha-mediated reporter gene activity. CONCLUSIONS: CLA initially decreased but subsequently increased insulin sensitivity in lepob/lepob mice. Activation of both PPARgamma and PPARalpha may contribute to the improvement in insulin sensitivity. In the short term, however, another mechanism, activated primarily by trans-10, cis-12-CLA, which probably leads to reduced adipocyte number and consequently reduced plasma adiponectin concentration, may decrease insulin sensitivity.


Assuntos
Glicemia/metabolismo , Insulina/sangue , Ácidos Linoleicos Conjugados/farmacologia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Adiponectina/sangue , Animais , Biometria , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Chlorocebus aethiops , Feminino , Humanos , Ácidos Linoleicos Conjugados/farmacocinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos/anatomia & histologia , Receptores Ativados por Proliferador de Peroxissomo/genética , Fatores de Tempo , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/metabolismo
16.
Curr Obes Rep ; 4(4): 451-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26346394

RESUMO

Obesity drugs have had a chequered history. In the recent past, only the low efficacy, pancreatic lipase inhibitor orlistat was available worldwide and it was little used. The 5HT2C agonist, lorcaserin, and two combinations of old drugs have been approved in the United States but not in Europe. The diabetes drug liraglutide has been approved in both the US and Europe and seems likely to be most widely accepted. In view of regulators' caution in approving obesity drugs, some (like beloranib) may initially be progressed for niche obesity markets. New drug targets have been identified in brown adipose tissue with the aim of not only activating thermogenesis but also increasing the capacity for thermogenesis in this tissue. Attempts are being made to match the efficacy of bariatric surgery by mimicking multiple gut hormones. Unapproved pharmacotherapies are tempting for some patients. Others remain optimistic about more conventional routes to pharmacotherapy.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Obesidade/tratamento farmacológico , Redução de Peso/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Fármacos Antiobesidade/farmacologia , Depressores do Apetite/uso terapêutico , Benzazepinas/uso terapêutico , Cinamatos/uso terapêutico , Ensaios Clínicos como Assunto , Cicloexanos/uso terapêutico , Aprovação de Drogas , Combinação de Medicamentos , Compostos de Epóxi/uso terapêutico , Europa (Continente) , Humanos , Lactonas/uso terapêutico , Liraglutida/uso terapêutico , Terapia de Alvo Molecular/tendências , Orlistate , Sesquiterpenos/uso terapêutico , Termogênese/efeitos dos fármacos , Estados Unidos
17.
PeerJ ; 3: e753, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25699203

RESUMO

The literature is unclear on whether the adipokine chemerin has pro- or anti-inflammatory properties or plays any role in the aetiology of type 2 diabetes or obesity. To address these questions, and in particular the potential of agonists or antagonists of the chemerin receptor CMKLR1 in the treatment of type 2 diabetes and obesity, we studied the metabolic phenotypes of both male and female, CMKLR1 knockout and heterozygote mice. We also investigated changes in plasma chemerin levels and chemerin gene mRNA content in adipose tissue in models of obesity and diabetes, and in response to fasting or administration of the insulin sensitizing drug rosiglitazone, which also has anti-inflammatory properties. The effects of murine chemerin and specific C-terminal peptides on glucose uptake in wild-type and CMKLR1 knockout adipocytes were investigated as a possible mechanism by which chemerin affects the blood glucose concentration. Both male and female CMKLR1 knockout and heterozygote mice displayed a mild tendency to obesity and impaired glucose homeostasis, but only when they were fed on a high-fat died, rather than a standard low-fat diet. Obesity and impaired glucose homeostasis did not occur concurrently, suggesting that obesity was not the sole cause of impaired glucose homeostasis. Picomolar concentrations of chemerin and its C15- and C19-terminal peptides stimulated glucose uptake in the presence of insulin by rat and mouse wild-type epididymal adipocytes, but not by murine CMKLR1 knockout adipocytes. The insulin concentration-response curve was shifted to the left in the presence of 40 pM chemerin or its C-15 terminal peptide. The plasma chemerin level was raised in diet-induced obesity and ob/ob but not db/db mice, and was reduced by fasting and, in ob/ob mice, by treatment with rosiglitazone. These findings suggest that an agonist of CMKLR1 is more likely than an antagonist to be of value in the treatment of type 2 diabetes and to have associated anti-obesity and anti-inflammatory activities. One mechanism by which an agonist of CMKLR1 might improve glucose homeostasis is by increasing insulin-stimulated glucose uptake by adipocytes.

18.
Br J Pharmacol ; 143(5): 517-8, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15514247

RESUMO

The pharmacology once ascribed to the 'beta4-adrenoceptor' is now believed to be that of a low-affinity state of the beta1-adrenoceptor. The beta2-adrenoceptor may also have a low-affinity state or site, while the beta3-adrenoceptor--the original low-affinity beta-adrenoceptor--can display more than one pharmacology. In this issue, Mallem et al. show that CGP-12177 relaxes thoracic aorta rings from normal rats by stimulating vascular smooth muscle low-affinity beta1-adrenoceptors, apparently linked in part to Gi protein. By contrast, in rings from hypertensive rats, CGP-12177 acts mainly via endothelial beta3-adrenoceptors. This work raises the possibility that low-affinity states of beta-adrenoceptors have physiological roles, and suggests that they might be drug targets.


Assuntos
Receptores Adrenérgicos beta/fisiologia , Aorta Torácica/efeitos dos fármacos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/efeitos dos fármacos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Humanos , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Propanolaminas/farmacologia , Receptores Adrenérgicos beta/efeitos dos fármacos , Receptores Adrenérgicos beta 3/efeitos dos fármacos
19.
Metabolism ; 53(10): 1322-30, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15375789

RESUMO

Glycogen synthase kinase-3 (GSK-3) protein levels and activity are elevated in skeletal muscle in type 2 diabetes, and inversely correlated with both glycogen synthase activity and insulin-stimulated glucose disposal. To explore this relationship, we have produced transgenic mice that overexpress human GSK-3beta in skeletal muscle. GSK-3beta transgenic mice were heavier, by up to 20% (P < .001), than their age-matched controls due to an increase in fat mass. The male GSK-3beta transgenic mice had significantly raised plasma insulin levels and by 24 weeks of age became glucose-intolerant as determined by a 50% increase in the area under their oral glucose tolerance curve (P < .001). They were also hyperlipidemic with significantly raised serum cholesterol (+90%), nonesterified fatty acids (NEFAs) (+55%), and triglycerides (+170%). At 29 weeks of age, GSK-3beta protein levels were 5-fold higher, and glycogen synthase activation (-27%), glycogen levels (-58%) and insulin receptor substrate-1 (IRS-1) protein levels (-67%) were significantly reduced in skeletal muscle. Hepatic glycogen levels were significantly increased 4-fold. Female GSK-3beta transgenic mice did not develop glucose intolerance despite 7-fold overexpression of GSK-3beta protein and a 20% reduction in glycogen synthase activation in skeletal muscle. However, plasma NEFAs and muscle IRS-1 protein levels were unchanged in females. We conclude that overexpression of human GSK-3beta in skeletal muscle of male mice resulted in impaired glucose tolerance despite raised insulin levels, consistent with the possibility that elevated levels of GSK-3 in type 2 diabetes are partly responsible for insulin resistance.


Assuntos
Intolerância à Glucose/genética , Quinase 3 da Glicogênio Sintase/biossíntese , Quinase 3 da Glicogênio Sintase/genética , Músculo Esquelético/fisiologia , Regiões Promotoras Genéticas/fisiologia , Animais , Western Blotting , Composição Corporal/fisiologia , Peso Corporal/fisiologia , Primers do DNA , DNA Complementar/biossíntese , DNA Complementar/genética , Feminino , Teste de Tolerância a Glucose , Glicogênio/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Proteínas Substratos do Receptor de Insulina , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Lipídeos/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Fenótipo , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Regul Pept ; 104(1-3): 1-9, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11830270

RESUMO

Neurons expressing prepro-orexin, the precursor of orexin-A and -B, are found in the lateral hypothalamic area, a region classically implicated in driving feeding. Orexin-A induces feeding transiently when injected centrally, and food intake can be decreased when orexin action is disrupted by immunoneutralization of orexin-A, or by pharmacological blockade of orexin receptors, or by transgenic knockout of orexin. Here, we argue that orexin neurons may act to stimulate feeding in the short term, and that important regulatory signals may be a fall in plasma glucose (stimulatory), countered by satiety signals generated by eating, such as gastric distention (inhibitory).


Assuntos
Proteínas de Transporte/fisiologia , Ingestão de Alimentos/fisiologia , Região Hipotalâmica Lateral/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Neurônios/metabolismo , Neuropeptídeos/fisiologia , Animais , Glicemia/fisiologia , Proteínas de Transporte/biossíntese , Humanos , Fome/fisiologia , Leptina/fisiologia , Neuropeptídeos/biossíntese , Orexinas , Resposta de Saciedade/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA