Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 959-966, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29307747

RESUMO

UHMK1 (KIS) is a nuclear serine/threonine kinase that possesses a U2AF homology motif and phosphorylates and regulates the activity of the splicing factors SF1 and SF3b155. Mutations in these components of the spliceosome machinery have been recently implicated in leukemogenesis. The fact that UHMK1 regulates these factors suggests that UHMK1 might be involved in RNA processing and perhaps leukemogenesis. Here we analyzed UHMK1 expression in normal hematopoietic and leukemic cells as well as its function in leukemia cell line. In the normal hematopoietic compartment, markedly higher levels of transcripts were observed in differentiated lymphocytes (CD4+, CD8+ and CD19+) compared to the progenitor enriched subpopulation (CD34+) or leukemia cell lines. UHMK1 expression was upregulated in megakaryocytic-, monocytic- and granulocytic-induced differentiation of established leukemia cell lines and in erythrocytic-induced differentiation of CD34+ cells. No aberrant expression was observed in patient samples of myelodysplastic syndrome (MDS), acute myeloid (AML) or lymphoblastic (ALL) leukemia. Nonetheless, in MDS patients, increased levels of UHMK1 expression positively impacted event free and overall survival. Lentivirus mediated UHMK1 knockdown did not affect proliferation, cell cycle progression, apoptosis or migration of U937 leukemia cells, although UHMK1 silencing strikingly increased clonogenicity of these cells. Thus, our results suggest that UHMK1 plays a role in hematopoietic cell differentiation and suppression of autonomous clonal growth of leukemia cells.


Assuntos
Diferenciação Celular/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Células K562 , Leucemia/genética , Leucemia/patologia , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Células U937 , Regulação para Cima/genética , Adulto Jovem
2.
Biochim Biophys Acta Mol Basis Dis ; 1868(6): 166382, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35301087

RESUMO

PIMREG expression strongly correlates with cellular proliferation in both malignant and normal cells. Throughout embryo development, PIMREG expression is prominent in the central nervous system. Recent studies have described elevated PIMREG expression in different types of tumors, which correlates with patient survival and tumor aggressiveness. Given the emerging significance of PIMREG in carcinogenesis and its putative role in the context of the nervous system, we investigated the expression and function of PIMREG in gliomas, the most common primary brain tumors. We performed an extensive analysis of PIMREG expression in tumors samples from glioma patients. We then assessed the effects of PIMREG silencing and overexpression on the sensitivity of glioblastoma cell lines treated with genotoxic agents commonly used for treating patients and assessed for treatment response, proliferation and migration. Our analysis shows that glioblastoma exhibits the highest levels of PIMREG expression among all cancers analyzed and that elevated PIMREG expression is a biomarker for glioma progression and patient outcome. Moreover, PIMREG is induced by genotoxic agents, and its silencing renders glioblastoma cells sensitive to temozolomide treatment and affects ATR- and ATM-dependent signaling. Our data demonstrate that PIMREG is involved in DNA damage response and temozolomide resistance of glioblastoma cells and further supports a role for PIMREG in tumorigenesis.


Assuntos
Glioblastoma , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Linhagem Celular Tumoral , Dano ao DNA , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA