RESUMO
Triple-negative breast cancer (TNBC) lacks expressed protein targets, making therapy development challenging. Hydrogels offer a promising new route in this regard by improving the chemotherapeutic efficacy through increased solubility and sustained release. Moreover, subcutaneous hydrogel administration reduces patient burden by requiring less therapy and shorter treatment times. We recently established the design principles for the supramolecular assembly of single-domain coiled-coils into hydrogels. Using a modified computational design algorithm, we designed Q8, a hydrogel with rapid assembly for faster therapeutic hydrogel preparation. Q8 encapsulates and releases doxorubicin (Dox), enabling localized sustained release via subcutaneous injection. Remarkably, a single subcutaneous injection of Dox-laden Q8 (Q8â¢Dox) significantly suppresses tumors within just 1 week. This work showcases the bottom-up engineering of a fully protein-based drug delivery vehicle for improved TBNC treatment via noninvasive localized therapy.
Assuntos
Preparações de Ação Retardada , Doxorrubicina , Hidrogéis , Neoplasias de Mama Triplo Negativas , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Hidrogéis/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Feminino , Humanos , Animais , Preparações de Ação Retardada/química , Linhagem Celular Tumoral , Engenharia de Proteínas , Camundongos , Liberação Controlada de Fármacos , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Antibióticos Antineoplásicos/químicaRESUMO
Large-scale international efforts to generate and analyze loss-of-function mutations in each of the approximately 20,000 protein-encoding gene mutations are ongoing using the "knockout" mouse as a model organism. Because one-third of gene knockouts are expected to result in embryonic lethality, it is important to develop non-invasive in utero imaging methods to detect and monitor mutant phenotypes in mouse embryos. We describe the utility of 3-D high-frequency (40-MHz) ultrasound (HFU) for longitudinal in utero imaging of mouse embryos between embryonic days (E) 11.5 and E14.5, which represent critical stages of brain and organ development. Engrailed-1 knockout (En1-ko) mouse embryos and their normal control littermates were imaged with HFU in 3-D, enabling visualization of morphological phenotypes in the developing brains, limbs and heads of the En1-ko embryos. Recently developed deep learning approaches were used to automatically segment the embryonic brain ventricles and bodies from the 3-D HFU images, allowing quantitative volumetric analyses of the En1-ko brain phenotypes. Taken together, these results show great promise for the application of longitudinal 3-D HFU to analyze knockout mouse embryos in utero.